

Energy & Sustainability Statement

For

219-223 Coldharbour Lane, Loughborough Junction, London

Ref: P16-014 Date: April 2020 Status: Issue for Planning Issue: 01

Client: Coldharbour Lane Ltd, c/o Rossmore Properties Investments Ltd, Unit 106, Bon Marche Centre, Ferndale Road, London SW9 8BJ

Contents

1	In	troduc	tion	.2
2	2 Planning Policy			
	2.1 Guic		E London Plan Sustainable Design and Construction Supplementary Planning March 2016	.3
	2.2	Lan	nbeth Local Plan 2015	.3
	2.	2.1	Policy EN3 Decentralised Energy	.3
	2.	2.2	Policy EN4 Sustainable Design & Construction	.3
	2.	2.3	Policy EN6 Sustainable Drainage Systems and Water Management	.4
3	Er	nergy \$	Strategy – Summary	.5
	3.1	Ene	ergy Statement:	.5
4	Sı	ustaina	ability Strategy – Summary	.7
5	BF	REEA	И	30
A	ppen	dix A.	······	31
1	Er	nergy \$	Statement:	31
2	In	troduc	tion	32
	2.1	Bas	eline Scheme: CO ₂ Emissions	33
3	Im	pact c	of Passive Design & Energy Efficiency Measures	33
4	As	sessn	nent of Low Carbon Technologies	35
	4.1	Cor	nection to Existing Heat Network	36
5	As	sessn	nent of Renewable Technologies	38
	5.1	Low	Temperature Hot Water Community Heating System	39
	5.2	Vial	bility of Solar Photovoltaic	40
6	С	onclus	ions	42
7	Si	te Wid	le Savings	44
8	Ap	pendi	X	44
	8.1	Off-	Site Construction	44
	8.2	BRI	JKL & SAP Reports	47
	8.3	PV	Array layout	48

1 Introduction

This document provides a summary and statement of the predicted energy and sustainability strategy for the extension of the existing first floor to the rear and the addition of 3 floors above comprising of existing 114.5m² Class A floor space on ground floor, $260.2m^2$ Class B1 flexible workshop/creative units on the ground floor, $90.3m^2$ Class A and $78.5m^2$ Class B space on first floor, including 8 Class C3 residential flats on remaining upper floors (4 x 1no. bedroom, 3 x 2no. bedroom, 1 x 3no. bedroom); provision of balconies, communal roof garden, bin stores & cycle parking; and other ancillary works at 219-223 Coldharbour Lane, located in the Borough of Lambeth.

The purpose of the report is to demonstrate how the project will seek to minimise its environmental impacts, in the context of relevant planning policy related to energy and sustainability.

This document is to be submitted to Lambeth Council as part of a full planning application.

2 Planning Policy

2.1 The London Plan Sustainable Design and Construction Supplementary Planning Guidance, March 2016-

The Supplementary Planning Guidance provides detail on the policies in the London Plan, which promote inclusive design. It sets out a framework and policies for achieving the highest standards of safe, easy and inclusive access for all people, regardless of disability, age or gender. It provides details and guidance to support developers to achieve sustainable development in line with London Plan Policy 5.3.

This section outlines the legislative policies, which have been identified to inform design decisions for the proposed development in support of this report and associated statements.

2.2 Lambeth Local Plan 2015

The Lambeth Local Plan 2015 is a concise, all-in-one plan setting out the vision, strategic objectives and policies for development in Lambeth over 15 years. The Plan covers housing, jobs, town centers, infrastructure, transport, environment, historic buildings and the quality of the built environment.

Together with the Mayor's London Plan it forms the statutory development plan for the borough.

2.2.1 Policy EN3 Decentralised Energy

States that all major developments will be expected to connect to, and where appropriate extend, existing decentralised heating, cooling or power networks in the vicinity of the site, unless a feasibility assessment demonstrates that connection is not reasonably possible.

Where networks do not currently exist, developments should make provision to connect to any planned future decentralised energy network in the vicinity of the site, having regard to opportunities identified through the London Heat Map and area specific energy plans.

2.2.2 Policy EN4 Sustainable Design & Construction

States that all developments, including construction of the public realm, highways and other physical infrastructure, will be required to meet high standards of sustainable design and construction feasible, relating to the scale, nature and form of the proposal.

Proposals should demonstrate in a supporting statement that sustainable design standards are integral to the design, construction and operation of the development. Non-residential

developments should also be accompanied by a pre-assessment, demonstrating how the following BREEAM standards, or any future replacement standards, will be met:

- I. All new non-residential developments and non-self-contained residential accommodation, should meet at least BREEAM 'Excellent' unless it is demonstrated that it is not technically feasible or viable to do so, in which case proposals should demonstrate a 'Very Good' rating with a minimum score of 63 per cent.
- II. All major non-residential refurbishment of existing buildings and conversions over 500m2 floor space (gross) should meet at least BREEAM Non-Domestic Refurbishment 'Excellent' unless it is demonstrated that it is not technically feasible or viable to do so, in which case proposals should demonstrate a 'Very Good' rating with a minimum score of 63 per cent.
- III. All non-residential development proposals should incorporate living roofs and walls where feasible and appropriate to the character and context of the development. Proposals should include a maintenance plan for the lifetime of the development.
- IV. Non-residential development will be required to be resilient to climate change by including appropriate climate change adaptation measures.
- V. Adequate remedial treatment of any contaminated land will be required before development can commence.

2.2.3 Policy EN6 Sustainable Drainage Systems and Water Management

States that sustainable drainage systems and water management requires development proposals to demonstrate that there will be a net decrease in both the volume and rate of run-off leaving the site by incorporating sustainable drainage systems (SuDS) in line with the London Plan drainage hierarchy and National SuDS Standards to maximise amenity and biodiversity benefits and improve the quality of water discharges.

3 Energy Strategy – Summary

Planning policy contains guidance on following an energy hierarchy when considering reduction in CO2 emissions in major development. The energy hierarchy approach first considers incorporation of energy efficiency measures including passive design, then supplying energy efficiently (with particular emphasis on decentralised energy generation including combined heat and power) and lastly the use of renewable energy technologies.

The current proposals relate to:

"the extension of the existing first floor to the rear and the addition of 3 floors above comprising of existing $114.5m^2$ Class A floor space on ground floor, $260.2m^2$ Class B1 flexible workshop/creative units on the ground floor, $90.3m^2$ Class A and $78.5m^2$ Class B space on first floor, including 8 Class C3 residential flats on remaining upper floors (4 x 1no. bedroom, 3 x 2no. bedroom, 1 x 3no. bedroom); provision of balconies, communal roof garden, bin stores & cycle parking; and other ancillary works"

This energy statement has been produced to describe the resulting energy strategy for the proposed re-development of 219-223 Coldharbour Lane, located within the Borough of Lambeth. This statement relates to the final proposals and is submitted as part of a full planning application for the development.

3.1 Energy Statement:

In accordance with Lambeth Council's policy the proposed redevelopment aspires to deliver a minimum on-site carbon dioxide emissions (CO2) reduction of 35% over Part L 2013 (design intent), where technically, functionally and economically feasible, based on the approach, information, analysis and contents reported in this document. The 35% CO2 reduction will be made up of the following anticipated key contributions:

- 1. Energy efficiency measures
- 2. Communal heating network
- 3. A centralised Air to Water Heatpump primary heating system (complete with buffer vessel)

The proposed re-development has followed the London Plan energy hierarchy and has considered incorporation of energy efficiency measures including passive design, supplying energy efficiently (with particular emphasis on decentralised energy generation and fabric first philosophy) and using renewable energy technologies. It should be noted that whilst the latest guidance from the GLA seeks a 35% CO2 reduction against the performance of the existing building, this energy statement predicts the % CO₂ saving beyond a 'New Build' Part L: 2013 compliant equivalent

Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildings

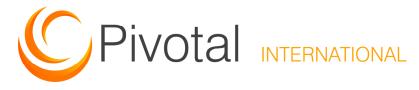
	Regulated domestic carbon dioxide savings	
	(Tonnes CO ₂ per annum)	(%)
Savings from energy demand reduction	2	23%
Savings from heat network / CHP	0	0%
Savings from renewable energy	5	60%
Cumulative on site savings	6	84%
Annual savings from off-set payment	1	-
	(Tonne	es CO2)
Cumulative savings for off-set payment	37	-
Cash in-lieu contribution (£)	2,238	

The energy statement is contained in full herein in Appendix A and follows the approach to energy statements in the document 'Energy Planning - GLA Guidance on preparing energy assessments' (March 2016).

The following section contains a summary sketch of the proposed key Energy and Sustainability elements for the scheme.

4 Sustainability Strategy – Summary

This section formally outlines how the development will meet the objectives of the London Policy Plan 5.2 Sustainable Design and Construction, outlined in the Mayor of London's Supplementary Planning Guidance.


The Mayor will, and boroughs should, ensure future developments meet the highest standards of sustainable design and construction and reflect this principle in UDP or LDF policies.

These will include measures to:


- Minimise carbon dioxide emissions across the site, including the building and services (such as heating and cooling systems)
- Avoiding internal overheating and contributing to the urban heat island effect
- Efficient use of natural resources (including water), including making the most natural systems both within and around buildings
- Minimising pollution (including noise, air and urban run-off)
- Minimising the generation of waste and maximising reuse or recycling
- Avoiding impacts from natural hazards (including flooding)
- Ensuring developments are comfortable and secure for users, including avoiding the creation of adverse local climatic conditions
- Securing sustainable procurement of materials, using local supplies where feasible
- Promoting and protecting biodiversity and green infrastructure
- The guidance establishes that major developments should meet the Mayor's Priorities outlined in the Supplementary Planning Guidance. The document also set out best practice ambitions for several topic areas.
- The following table addresses each of these topic areas, identifying how the development achieves the Mayor's Priorities and where feasible the Mayor's Best Practice.

London Plan 2016		
4.1 SPG Section 2.2: Land		
Optimising the use of land	Development Response	
 Mayor's Priorities Through both their Local Plans and planning decisions, boroughs should ensure development patterns reflect the strategic spatial vision for London's growth as set out in Chapter 2 of the London Plan. Through both their Local plans and planning decisions, boroughs should aim for 100% of development to be delivered on previously developed land. Developers should optimise the scale and density of their development, considering the local context, to make efficient use of London's limited land 	The proposed development will be sited on previously developed land, located within Lambeth. The site is 100% brownfield and no green-field development is proposed. The development will increase density in line with Mayor's principle: <i>'Make best use of all developable land by increasing density'</i> . The building design will ensure that the use of floor space is optimised, balancing the need to create a building with sufficient floor area, whilst ensuring that the building design/massing is in keeping with the surrounding buildings. The design team's aspiration is to create a building with a high quality internal environment, with the inclusion of private outdoor spaces. The development proposals will provide new active frontage. The development is located in an area with excellent public transport connections which are able to support the increase in density on the site.	
	There are a number of issues which have been taken into account by the design team when determining the height and massing, and therefore density of the proposed buildings. These include privacy; light pollution and shadowing issues to the neighboring buildings; micro-climatic effects are mainly determined by constraints of the existing buildings and surroundings.	

Basements and Lightwells	Development Response
 Mayor's Priorities When planning a basement development, developers should consider the geological and hydrological conditions of the site and surrounding area, proportionate to the local conditions, the size of the basement and lightwell and the sensitivity of adjoining buildings and uses, including green infrastructure. When planning and constructing a basement development, developers should consider the amenity of neighbors. Mayor's Best Practice Where there is pressure for basement developments, boroughs should consider whether there are any particular local geological or hydrological issues that could particularly effect their construction and adopt appropriate policies to address any local conditions.	
Local food growing	Development Response
 Mayor's Priorities To protect existing established food growing spaces. Mayor's Best Practice To provide space for individual or communal food growing, where possible and appropriate. To take advantage of existing spaces to grow food, including adapting temporary spaces for food growing. 	The dwellings will be provided with high quality amenity space in the form of a roof garden that could give opportunity for individual food growth along with private balconies to upper floor residential units, which is consistent with such a central London location.

4.2 SPG section 2.3: Site layout and design		
Site layout and design	Development Response	
Mayor's Priorities 1. The design of the site and building layout, footprint, scale and height of buildings as well as the location of land uses should consider:	Works will involve retaining the existing primary building structure with refurbishment of the building fabric in line with current Part L requirements. Areas of soft landscaping will be incorporated via the roof terrace.	
 Existing features the possible retention and reuse of existing buildings and structures; and the retention of existing green infrastructure, including trees and potential for its improvement and extension; access routes to public transport and other facilities that minimise the use of public transport; New design of development 	There are a number of issues which have been taken into account by the design team when determining the height and massing of the proposed building. These include privacy, light pollution and overshadowing issues to the neighboring buildings, consideration of micro- climatic effects due to wind flow, and the limitations created by new and existing underground services and utilities.	
 New design of development the existing landform; the potential to take advantage of natural systems such as wind, sun and shading; the principles sets out London Plan policies 7.1 and 7.6; the potential for adaption and reuse in the future; 	219-223 Coldharbour is located within easy walking distance of numerous public transport links. The site is located adjacent to several bus stops with main bus routes running along Coldharbour Lane. The site is also within walking distance of Loughborough Junction & Brixton rail stations offering transport links to the North and South of London.	
 potential for incorporating green infrastructure; potential for incorporating open 	A Transport Statement has been produced and will form part of the overall planning submission.	
 space, recreation space, child play space; energy demands and the ability to take advantage of natural systems and low and zero carbon energy sources; site wide infrastructure; access to low carbon transport 	Two Tier racks containing 4 spaces for	
 modes; potential to address any local air quality, noise disturbance, flooding and land contamination issues; 	A Santander Cycle Hire docking station is located 2km to the West of the site at Stockwell Underground Station. At present the development strategy has	
and The potential effect on the 	been designed to align with current market demands in this particular area of London.	
microclimate.	It is intended to develop the commercial	

Mayor's Best Practice

Any existing buildings that can be practically refurbished, retrofitted, altered, or extended should be retained and reused

A mix of uses, where suitable should be included to provide a range of services commensurate to the public transport accessibility

areas as a shell and core for speculative market lease agreement on either single or multi tenanted basis. The retail spaces will be flexible for any incoming tenant in terms of both use and layout. Each floor has been designed as open-plan with columns positioned to enable partitioning if required, and the design of core services allows per-floor supply.

Roof 'green' terraces will increase the buildings thermal mass and decrease cooling loads whilst also absorbing heat emitted from the building, thus serving to reduce the heat island effect.

The aspiration of the design is to create a high quality simple, efficient and flexible building that will make maximum use of the natural resources available and reduce reliance on mechanical systems where possible, considering orientation, massing, thermal mass, shading, internal gains etc.

The development may experience a range of wind conditions, which are deemed generally, in keeping with the intended use of the existing and proposed site. Any areas which may be identified as having conditions outside of recommendations for outdoor use will be considered as part of the detailed design of the site.

The orientation of the building is generally Northeast-Southwest, which means that the majority of residential and commercial spaces will receive direct sunlight at some point during the day and year. Facade treatments are being selected to optimise the benefits of natural daylight into the building, whilst controlling solar gains and heat losses.

The massing of the building has been developed to ensure that the local residents retain a good level of daylighting to their properties. The issue of glare has also been considered.

For the occupants of 219-223 Coldharbour Lane and Hinton Road, glare will be reduced through

	 good façade design, glazing with good g-values and consideration of the use of internal blinds or curtains etc. Reducing the reflectivity of the glass will also be beneficial for the surrounding buildings. An adaptable façade design and glazing selection will also help to reduce the impact of unwanted solar gain, which would increase cooling loads and resulting energy consumption for the site. By reinvigorating the existing site, and creating a new residential and retail destination, it is hoped that the Proposed Development site can provide greater integration into the locality. The Proposed Development recognises that for new buildings to be considered useable for at least
	the next 60 years, a considerable level of future flexibility will need to be incorporated into the design.
	 The building environmental services strategy has been based on the need to accommodate possible future scenarios into the proposed redevelopment including: Advances in technology, including energy supply and conservation such as the gradual rol
	 out of the Pimlico district network, retrofit of fuel cells, or possible bio-fuel infrastructure; Climate change, including the predicted increases in both external temperature and intensity of rainfall over the coming decades;
	 Increase in transient nature of business practice Market sector demand; Requirement of different types of tenant and usage flexibility within the dwelling/use type.
4.3 Energy and carb	on dioxide emissions (SPG section 2.4)
Energy and carbon dioxide emissions	Development Response
Mayor's Priorities 1. The overall carbon dioxide emissions from a development should be minimised through the implementation of the energy hierarchy set out in London Plan policy 5.2. 2. Developments should be designed to meet the following Regulated carbon	Appendix A below.
dioxide standards, in line with London Plan policy 5.2. Pivotal International	Energy Statement: In accordance with Lambeth Council's policy the proposed redevelopment aspires to deliver a

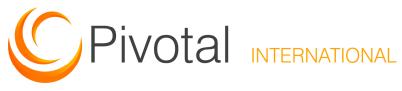
 Residential buildings Year Improvements beyond 2010 Building Regulations 1st October 2013 to 2016 40 per cent (or 35% below 2013 Building Regulations) 2016 to 2031 - Zero carbon Non-domestic buildings Year Improvements beyond 2010 Building Regulations 1st October 2013 to 2016 40 per cent (or 35% below 2013 Building Regulations) 2016 – 2019 As per the Building Regulations) 2016 – 2019 As per the Building Regulation requirements 2019 to 2031 Zero carbon Mayor's Best Practice Developments should contribute to ensuring resilient energy infrastructure and a reliable energy supply, including from local low and zero carbon sources. 2. Developers are encouraged to include innovative low and zero carbon dioxide emissions within developments and keep up to date with rapidly improving technologies.	 minimum on-site carbon dioxide emissions (CO₂) reduction of 35% over Part L 2013 (design intent), where technically, functionally and economically feasible, based on the approach, information, analysis and contents reported in this document. The 35% CO₂ reduction will be made up of the following anticipated key contributions: Energy efficiency measures Low Temperature Centralised Communal Heating Network.
Energy demand assessment	Development Response
Mayor's Priorities 1. Development applications are to be accompanied by an energy demand assessment.	An energy statement has been prepared to detail the energy strategy for the Proposed Development and is submitted as part of this energy & Sustainability Statement, see Appendix A. This document includes an energy demand assessment following the approach to energy statements as detailed in the 'Energy Planning - GLA Guidance on preparing energy assessments' document.
Use less energy	Development Response
Mayor's Priorities 1. The design of developments should prioritise passive measures.	In line with the energy hierarchy set in the London Plan, the demand reducing measures set out in the Energy Statement was incorporated in the

design with priority given to passive measures **Mayor's Best Practice** including the fabric first principals: 1. Developers should aim to achieve Part L 2013 Building Regulations Maximising air-tightness. requirements through design and Using Super-high insulation. energy efficiency alone, as far as is Optimising solar gain through the provision of practical. openings and shading. Optimising natural ventilation. Using the thermal mass of the building fabric. Using energy from occupants, electronic devices, cookers and so on. This delivers on the The London Plan Spatial Development Strategy (SPD). The preliminary calculations included in the Energy Statement indicate that the development is in line to surpass Part L 2013 Regulations carbon emission reduction requirements through design and energy efficiency alone. **Energy efficient supply Development Response Mayor's Priorities** Existing and planned heat networks and anchor heat loads in the vicinity of the site 1. Where borough heat maps have identified district heating opportunities. have considered for the potential boroughs should prepare more connection to the site, but no immediate detailed viable opportunities for connection were identified for the Pimlico Heat Network Energy Master Plans (EMPs) to establish the extent of market Scheme. competitive district heating networks. The Proposed Development will be served by a community heating system which enables 2. Developers should assess the potential connection to any future heat networks in the vicinity for their development to: of the site. The community heating system consist of a LTHP connect to an existing district heating Air Source Heat Pump ASHP located in a central or cooling network; plant room to supply the space heating and DHW expand an existing district heating or requirements. This novel configuration significantly cooling network, and connect to it; or decreases the circulation heat losses attributed to Establish a site wide network, and conventional hydronic communal heating systems, enable the connection of existing which typically, have a requirement of a continuous buildings in the vicinity of the loop of high temperature water supply. This system development. also beneficially alters the proportion of the DHW and space heating requirements. 3. Where opportunities arise, developers Capped off connections are proposed to the generating energy or waste heat boundary of the site enable connectivity to district or should local heat network when such an option becomes maximise long term carbon dioxide

savings by feeding the decentralised energy network with low or zero carbon hot water, and where required, cold water.	available and viable.
4.4 Renewab	energy (SPG section 2.5)
Renewable energy	Development Response
 Mayor's Priorities 1. Boroughs and neighborhoods should identify opportunities for the installation of renewable energy technologies in their boroughs and neighborhoods. 2. Major developments should incorporate renewable energy technologies to minimise overall carbon dioxide emissions, where feasible. 	A feasibility study has been undertaken to determine what is deemed the most appropriate renewable energy source for the development (for more details please refer to the Energy Statement included in Appendix A herein). The integration of living roof and PV panels to create a bio-solar roof is proposed for the development. The PV array will provide renewable electricity to the development. The PV layout has made use of the available roof area limited due to the form and massing of the building whilst providing consideration to the application of a roof terrace and local screened plant area and parapet.
Carbon dioxide off-setting	Development Response
 Mayor's Priorities Boroughs should establish a carbon dioxide off-set fund and identify suitable projects to be funded. Where developments do not achieve the Mayor's carbon dioxide reduction targets set out in London Plan policy 5.2, the developer should make a contribution to the local borough's carbon dioxide off-setting fund 	The current energy prediction results in the site wide 82% CO ₂ savings target being achieved and as such is expected to make an offset payment in accordance with London Plan Policy 5.2. The remaining regulated carbon dioxide emissions savings to 100 per cent provided by way of a carbon offset financial contribution, based on £95 per tonne. Refer to the CO2 calculation tables below in for contribution amount.

Retrofitting	Development Response
 Mayor's Priorities 1. Boroughs should set out policies to encourage the retrofitting of carbon dioxide and water saving measures in their borough. 2. Where works to existing 	The proposed design will incorporate CO ₂ and water savings measures as detailed elsewhere in this document.
developments are proposed developers should retrofit carbon dioxide and water saving measures.	
Monitoring energy use	Development Response
Mayor's Priorities 1. Developers are encouraged to incorporate monitoring equipment and systems where appropriate to enable occupiers to monitor and reduce their energy use.	Extensive submetering will be present to allow monitoring as well as separate billing of individual tenancies. Energy display devices will be provided in the dwellings in line with the equivalent requirement of the deregulated Code for Sustainable Homes criteria.
Supporting a resilient energy supply	Development Response
Mayor's Priorities 1. Developers are encouraged to incorporate equipment that would enable their schemes to participate in demand side response opportunities.	The proposed development overall energy demand has been minimised through the implementation of the sustainable design measures outlined in this statement; this will reduce overall impact on the wider energy network.
	The development will also be provided with comprehensive sub-metering and smart meters to allow better management of the energy demand and better response to wider network energy availability through the central BMS system.
4.5 Water efficiency (SPG section 2.6)	
Water efficiency	Development Response
Mayor's Priorities 1. Developers should maximise the opportunities for water saving measures and appliances in all developments, including the reuse and using alternative sources of water.	 The re-development recognises that the threat of future water shortage is a serious issue for London. Water efficiency and recycling has been made a key priority in the design by incorporating the following water efficiency elements: Reduce mains water consumption on site

2. Developers should design residential schemes to meet a water consumption rate of 105 litres or less per person per day.	 Reuse water on site where possible thus reducing water to sewerage Specify water efficient internal sanitary ware and appliances
3. Where a building is to be retained, water efficiency measures should be retrofitted.4. New per residential	The target water consumption for residential dwellings is 105 litres/person/day and the combination of relevant measures herein will enable credits to be targeted for the BREEAM
4. New non-residential developments, including refurbishments, should aim to	assessment.
achieve the maximum number of water credits in a BREEAM	All individual dwellings as well as commercial units will be separately metered.
assessment or the 'best practice' level of the AECB (Association of Environment Conscious Building) water standards.	Methods to Reduce Consumption and Wastage: Proximity detection water shut-off using infra-red presence detection monitors
5. All developments should be designed to incorporate rainwater harvesting.	(PIRs) will ensure that when the toilet and shower areas are not in use, there is no risk of water leakage. This will be applied to non-residential areas.
Mayor's Best Practice 6. All residential units, including individual flats / apartments and commercial units, and where practical, individual leases in large commercial properties should be	Pulsed output water meters will be installed at the site boundary and the building entry points to provide leak detection between the buildings and site boundary, as well as for monitoring large water uses in the building. All nondomestic and domestic units will have individual water meters.
metered.	Water Saving Devices: The following range of water efficient
	measures have been incorporated into the design to reduce water consumption
	Dual flush WCs
commercial properties should be	Water Saving Devices: The following range of water efficient measures have been incorporated into the design to reduce water consumption demand:


4.6 Materials and waste (SPG section 2.7)		
Design phase	Development Response	
Mayor's Priorities 1. The design of development should prioritise materials that: have a low embodied energy, including those that can be reused intact or recycled - at least three of the key elements of the building envelope (external walls, windows roof, upper floor slabs, internal walls, floor finishes / coverings) are to achieve a rating of A+ to D in the BRE's <i>The Green Guide</i> of specification; can be sustainably sourced - at least 50% of timber and timber products should be sourced from accredited Forest Stewardship Council (FSC) or Programme for the Endorsement of forestry Certification (PEFC) source; are durable to cater for their level of use and exposure; and Will not release toxins into the internal and external eenvironment, including those that deplete stratospheric ozone. Mayor's Best Practice 1. The design of developments should maximise the potential to use prefabrication elements.	 Where new materials are required: Materials will be chosen that have a minimal environmental impact, are from sustainable or recycled sources and, where feasible, are locally sourced to reduce transportation impacts, prioritising the following factors: <i>Life cycle costing (£ and CO2)</i> <i>Use renewable materials</i> <i>Source materials locally</i> <i>Recycled content</i> <i>Minimise waste to landfill</i> <i>Specification of materials with zero exotoxins</i> <i>Synthetic or non-sustainably-sourced materials to be minimised</i> Off-site manufacturing <i>Ethical sourcing</i> <i>Minimise embodied energy</i> <i>Design for Disassembly</i> <i>Recycled july of materials</i> <i>Design mechanical fixings to facilitate deconstruction</i> <i>Specify materials and plant that can be re-used</i> <i>Lowest available embodied carbon option MEP Materials Specification</i> <i>Minimise gluing and composite materials</i> The project team will target the use of materials selected in accordance with The Green Guide to Specification, a measure of environmental impact of the material over its lifetime. The selection of A+ and A-rated materials will be prioritised and feed in to the BREEAM credit scores. The team will endeavor to use structural timber from FSC compliant sources. The team will also endeavor to use non-structural timber from a known source with a sustainable purchasing policy, and not be included on the CITES (Convention on International Trade in Endangered Species) list. Insulation materials for building elements and building services will be specified with low embodied environmental impact (minimal global warming potential and zero ozone depleting properties). The opportunity to source construction 	

	 materials from a factory/plant, quarry, railhead or recycling centre close of the site will be investigated, with priority given to use of prefabricated elements, where feasible. Locally sourced aggregates and durable materials will be emphasised in the hard landscaping, where feasible. The Institute of Civil Engineers (ICE) Demolition Protocol will be followed to ensure that the potential for reusing and recycling the materials currently on site will be maximised. A full survey will be undertaken to review where materials can be reused on site e.g. aggregates, and if they can't be used, where they can be recycled as locally as possible. No peat or weathered limestone is to be used in either the buildings or landscaping. The Waste & Resources Action Programme (WRAP) toolkit will be used at design stage to assess how use of recycled and reused materials can be maximised. The development will aim to maximise the proportion of materials and components that can be re-used at the end of the building's life. 'Designing for robustness' will ensure that damage to the building due to wear and tear, for example in areas of heavy usage, is minimised and can be repaired with minimal environmental or cost impact
Construction phase	Development Response
Mayor's Priorities 1. Developers should maximise the use of existing resources and materials and minimise waste generated during the demolition and construction process through the implementation the waste hierarchy.	 The development aims to be a sustainable building with high standards of environmental performance. As such, due consideration is given to the waste generated by the buildings during all phases of the development from site enabling works, during its operation and through to its eventual decommissioning. As a result, the waste strategy has the following aims: To contribute towards achieving current and long-term government GLA and City of Westminster targets for waste minimisation, recycling and reuse. To ensure that all legal requirements for the handling and management of operational waste are complied with To provide tenants with a convenient, clean and efficient waste management systems that

	enhance the operation of the building and promote high levels of recycling.
	The following points are key to the design and construction of the project:
	 During Construction: Site wide waste management plan Opportunities for prefabrication Recycling target Site travel efficiency
	 During Operation: Sufficiently sized and centralised space for recycling collection Compactors Minimise volume of waste to landfill
	The principle contractor will have responsibility for writing, implementing and updating the Site Waste Management Plan (SWMP) throughout the development process. The SWMP will identify all waste streams and will discuss the potential to reduce, re-use, and recycle all materials wherever possible.
	 This commitment to minimisation will be achieved in a number of ways, including but not limited to, the following: Agreements with material suppliers to reduce the amount of packaging or to participate in a packaging take back scheme Implementation of a 'Just in Time' material delivery system to avoid materials being stockpiled on site for long periods of time, which increases risk of damage and disposal as waste Attention to material quantity requirements to avoid over ordering and generation of waste materials Re-use of materials wherever feasible Segregation of waste at source where practical Re-use and re-cycling of materials off-site where re-use on-site is not practical
	Modular construction / off site prefabrication will be considered delivering benefits: see Appendix 7.1
	Recycling collection facilities will be implemented in the building within Ground Floor refuse stores. All waste will be collected from Coldharbour Lane.
Pivotal International	20

Occupation phase	Due to the nature of the existing site where applicable the Institute of Civil Engineers (ICE) Demolition Protocol will be followed to ensure that the potential for reusing and recycling the materials currently on site will be maximised. A full survey will be undertaken to review where materials can be reused on site e.g. aggregates, and if they can't be used, where they can be recycled as locally as possible. Development Response	
 Mayor's Priorities 1. Developers should provide sufficient internal space for the storage of recyclable and compostable materials and waste in their schemes. 2. The design of development should meet borough requirements for the size and location of recycling, composting and refuse storage and its removal. 	Recycling facilities will be implemented in the building. Separate residential and commercial waste stores will be provided at ground level, each with separate bins for general waste and recyclables. Commercial bin store includes a compactor with 1280I Eurobins and the remainder bin stores with 1280I Eurobins only to meet Lambeth Council's Waste & Recycling Storage & Collection Requirements (Oct 2013)	

Nature conservation and biodiversity	Development Response
 Mayor's Priorities There is no net loss in the quality and quantity of biodiversity. Developers make a contribution to biodiversity on their development site. 	Due to the constraints of the existing site the landscaping scheme is limited although where feasible and identified will be developed to maximise ecological improvement and provide environmental benefit, with particular focus given in the following areas: Terraces within the development will ensure that there will be a net gain in terms of biodiversity on the site. The site has currently low ecological value and therefore proposed improvements will result on a significant improvement on the biodiversity of the site. Where feasible, vegetation to be planted on the site will have a low water requirement (low maintenance native species and drought resistant species will be specified) and will be selected to
	improve the habitat for local wildlife and birds. Planting species will be found on the London Biodiversity Action Plan.
4.8 Tackling increase temperature and drought (SPG section 3.2)	
Overheating	Development Response
Pivotal International	21


Mayor's Priorities 1. Developers should include measures, in the design of their schemes, in line with the cooling hierarchy set out in London Plan policy 5.9 to prevent overheating over the scheme's lifetime.	An adaptable façade design and self-shading ability plus glazing selection has been deployed on the scheme to help reduce the impact of unwanted solar gain, which would otherwise increase cooling loads and hence energy consumption in the building, whilst encouraging daylight and providing views.	
Mayor's Best Practice 1. The design of developments should prioritise landscape planting that is drought resistant and has a low water demand for supplementary watering.		
Resilient foundations	improve the habitat for local wildlife and birds. Development Response	
Mayor's Best Practice 1. Developers should consider any long term potential for extreme weather	The site does not propose any new trees and new foundations will be incorporated as part of the overall proposal.Any new trees considered will be above ground floor, so can be planted within tree pits which would create the root barriers.	
events to affect a building's foundations and to ensure they are robust.		


4.9 Increasing green cover and trees (SPG section 3.3)		
Urban greening	Development Response	
Mayor's Priorities 1. Developers should integrate green infrastructure into development schemes, including by creating links with wider green infrastructure network.	Opportunities for incorporation of green areas have been maximised despite the development being in a dense urban location and constrained by the existing site and building. Additional green coverage will be provided with the incorporation of strategically located planters and soft landscaping. This will be in excess of 5% increase as the existing development has very	
2. Major developments in the Central London Activity Area (CAZ) should be designed to contribute to the Mayor's target to increase green cover by 5% in this zone by 2030.	limited green areas.	
Trees	Development Response	
Mayor's Priorities 1. Developments should contribute to the	There is no loss of trees anticipated in the development.	
Mayor's target to increase tree cover across London by 5% by 2025.	Additional tree coverage is restricted by virtue of the existing site and building.	
2. Any loss of a tree/s resulting from development should be replaced with	New trees indicated on planning drawings which will be subject to conditions	
an appropriate tree or group of trees for the location, with the aim of		
the same canopy cover as that provided		
by the original tree/s.		

4.10 Flooding (SPG section 3.4)		
Surface water flooding and sustainable drainage	Development Response	
 Mayor's Priorities 1. Through their Local Flood Risk Management Strategies boroughs should identify areas where there are particular surface water management issues and develop policies and actions to address these risks. 2. Developers should maximise all opportunities to achieve greenfield runoff rates in their developments. 3. When designing their schemes developers should follow the drainage 	A Flood Risk Assessment has been undertaken for the site. This includes data which confirms that the site is at very low risk of surface water flooding and that there are no records of the site having flooded in the past due to sewer flooding. Existing sewers would continue to be used to convey the majority of surface runoff from the site. Otherwise, the Proposed Development	
 hierarchy set out in London Plan policy 5.13 4. Developers should design Sustainable Drainage Systems (SuDS) into their schemes that incorporate attenuation for surface water runoff as well as habitat, water quality and amenity benefits. 	does not represent a significant change to the runoff characteristics of the site. In view of the scale and context of the construction works (redevelopment largely comprises internal reconfiguration and changes to the facades and would take place entirely within the existing built footprint), the significant amount of work required to achieve further reductions in	
	runoff through other SUDS is not considered to be justified.	
Flood resilience and resistance of buildings in floor risk areas	Development Response	
Mayor's Priorities 1. Development in areas at risk from any form of flooding should include flood resistance and resilience measures in line with industry best practice	The site is located in Flood Zone 1 Even in the very unlikely occurrence of flooding in Coldharbour Lane a flooding depth of 250 mm would only lead to a depth of flooding above kerb height of approximately 100 mm and would be very unlikely to rise above FFLs.	

Flood risk management	Development Response	
 Mayor's Priorities Developments are designed to be flexible and capable of being adapted to and mitigating the potential increase in flood risk as a result of climate change. Developments incorporate the recommendation of the TE2100 plan for the future tidal flood risk management in the Thames estuary Where development is permitted in a flood risk zone, appropriate residual risk management measures are to be incorporated into the design to ensure resilience and the safety of occupiers. 	The design of the proposed development has included the potential for climate change increases in flood risk. As a result of the Thames Tidal Defenses, there is not predicted to be any flooding of the site even in the event of climate change-induced increases in flood levels over the next 100 years. Measures to address residual flood risks have been incorporated in the design as described above.	
Flood defenses	Development Response	
 Mayor's Priorities 1. Development should maximise all opportunities to achieve an 8m setback on fluvial watercourses between built development and watercourses, flood defenses and culverts. 2. Development should maximise all opportunities to achieve a 16m setback on tidal watercourses between built development and watercourses and flood defenses. 	The proposed development is at a significantly greater distance than 16 m from any watercourse or flood defense.	
Other sources of flooding	Development Response	
Mayor's Priorities 1. All sources of flooding need to be considered when designing and constructing developments.	The design has considered all sources of flooding.	

4.11 Land contamination (SPG section 4.2)		
Land contamination	Development Response	
Mayor's Priorities 1. Developers should set out how existing land contamination will be addressed prior to the commencement of their development.	No land contamination is expected on site. Proposed uses do not represent high polluting risk.	
2. Potentially polluting uses are to incorporate suitable mitigation measures.		
4.12 Air pollu	ition (SPG section 4.3)	
Air pollution	Development Response	
 Mayor's Priorities Developers are to design their schemes so that they are at least 'air quality neutral'. Developments should be designed to minimise the generation of air pollution. Developments should be designed to minimise and mitigate against increased exposure to poor air quality. Developers should select plant that meets the standards for emissions from combined heat and power and biomass plants set out in Appendix 7. Developers and contractors should follow the guidance set out in the emerging minimising dust and emissions from construction and demolition SPG when constructing their development. 	 The following factors have been taken into account within the design: Minimise NOx emissions Carbon filters fitted to MVHR systems Reduction of traffic to site by providing cycling facilities. Plant and machinery will be designed to incorporate a maintenance strategy. This will ensure plant is easily accessible and recommendations for a regular service agreement will be put in place. Regular maintenance and inspection of plant can avoid adverse health impacts, by maintaining operational efficiency and minimizing harmful emissions. A Transport Statement has been produced to assess the transport impact of the proposed development. The following long stay cycle parking has been provided at basement level which meets London Plan 2015 standards: Two Tier racks containing 4 spaces for Shop/Office occupants Two Tier racks containing 19 spaces for residential use 	
	at Stockwell Underground Station. KPIs will be set to monitor and reduce impacts of construction works, including air	

	pollution, energy and water use, and construction vehicle traffic.	
4.13 Noise (SPG section 4.4)		
Noise	Development Response	
 Mayor's Priorities Areas identified as having positive sound features or as being 'quiet areas' should be protected from noise enhanced, where possible. Noise should be reduced at source and then designed out of a scheme to reduce the need for mitigation measures. 	The following factors have been prioritised within the design in order to reduce the impact of noise produced within the development, and minimise the negative effect of noise sources arising outside the building: • Optimise deliveries and timings • Attenuation of noise to and from the site • Location in relation to noise sensitive environments • Reduction of traffic to site by providing cycling facilities The local acceleration and breaking of traffic on surrounding roads creates noise and airborne pollution. Noise surveys have been undertaken on the site and concluded that suitable noise levels can be achieved using appropriate façade treatment through insulation, glazing and ventilation arrangements. An initial facade sound insulation assessment has been carried out to determine the required acoustic performance of the facade in order to achieve indoor ambient noise levels as set out by the relevant guidance, and provide guidance on the ventilation strategy. This has informed the design of the facade and associated Building Services. For residential dwellings, the proposed design intent is to improve on Building Regulations (2003) Part E for internal sound transmission standards by 5dB. Furthermore, people will be encouraged to take public transport or cycle to the development, which will contribute towards reducing the local sound and air pollution levels by reducing traffic to the site.	

Deliveries to site will be coordinated and optimised to limit the noise and traffic impact on local residents. 4.14 Light pollution (SPG section 4.5) Light pollution **Development Response Mayor's Priorities** Light pollution will be minimised by 1. Developments and lighting schemes considerate selection of external light should be designed to minimise light fittings to avoid light spillage as well as time clock and dusk-to-dawn controls. pollution. 4.15 Water pollution (SPG section 4.6) Surface water runoff **Development Response Mavor's Priorities** The Proposed Development 1. In their aim to achieve a greenfield does not represent a significant change to the runoff characteristics of the site. runoff rate developers should incorporate sustainable urban drainage systems (SuDS) into their schemes Best practice water management and which also provide benefits for water pollution control will be employed during quality. construction. **Mayor's Best Practice** 2. Encourage good environmental practice to help reduce the risk from business activities on the London water environment. 3. Encourage those working on demolition and construction sites to prevent pollution by incorporating prevention measures and following best practice. Water treatment **Development Response** Mayor's Best Practice The development will be connected to the 1. Residential developments discharging public foul sewer. domestic sewage should connect to the public foul sewer or combined sewer network where it is reasonable to do so. 2. Commercial developments discharging trade effluent should connect to the public foul sewer or combined sewer network where it is reasonable to do so subject to a trade

effluent consent from the relevant sewerage undertaker.
3. Developments should be properly connected and post-construction checks should be made by developers to ensure that misconnections do not occur.

5 BREEAM

The aim of BREEAM is to estimate the environmental impact of buildings. Lambeth Local Plan 2015 EN4 Sustainable Design & Construction requires;

 All major non-residential refurbishment of existing buildings and conversions over 500m2 floorspace (gross) should meet at least BREEAM Non-Domestic Refurbishment 'Excellent' unless it is demonstrated that it is not technically feasible or viable to do so, in which case proposals should demonstrate a 'Very Good' rating with a minimum score of 63 per cent.

As the non-residential refurbishment area is less than the specified 500m2, a BREEAM Non-Domestic Refurbishment assessment has not taken place.

Appendix A

1 Energy Statement:

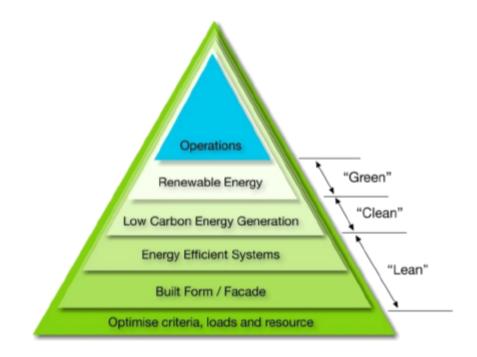
This energy statement has been produced to describe the resulting energy strategy for the proposed development of 219-223 Coldharbour Lane, located within the Borough of Lambeth.

This statement relates to the final proposals and is submitted as part of a full planning application for the redevelopment.

In accordance with WCC policy the proposed redevelopment aspires to deliver a minimum on-site carbon dioxide emissions (CO₂) reduction of 35% over Part L 2013 (design intent), where technically, functionally and economically feasible, based on the approach, information, analysis and contents reported in this document. The 35% CO₂ reduction will be made up of the following anticipated key contributions:

- Energy efficiency measures
- Communal heating network via ASHP central plant

The proposed development is made up of a material change of use from Sui Generis and Retail Spaces to Office & Retail spaces, located across ground and first floor levels, with 8 residential units over first floor. The proposed development has followed the London Plan energy hierarchy and has considered incorporation of energy efficiency measures including passive design, supplying energy efficiently (with particular emphasis on fabric first principals and communal space and DHW heating system) and using renewable energy technologies. It should be noted that whilst the latest guidance from the GLA seeks a 35% CO₂ reduction against the performance of the existing building, this energy statement predicts the % CO₂ saving beyond a 'New Build' Part L: 2013 compliant equivalent building.


2 Introduction

This Energy Statement demonstrates how the proposed development addresses the energy policy requirements of Lambeth Council and the Mayor of London, in particular the Lambeth Local Plan 2015, the Greater London Authority (GLA) London Plan, and the GLA Supplementary Planning Guidance (SPG) on Sustainable Design and Construction. The report addresses the assessment process and the estimated CO2 savings achieved through integration of passive design, energy efficiency measures and Low and Zero Carbon (LZC) technologies.

The approach taken for the energy assessment is in line with Greater London Authority (GLA) planning policy for energy:

- 'Be Lean' A review of the energy efficient measures incorporated to reduce energy demand (form, building fabric and building services);
- 'Be Clean' Investigation of the feasibility of CHP/CCHP for the site;
- 'Be Green' An assessment of the feasibility of a range of low and zero carbon technologies for the site;
- Predicted performance against policy targets.

The project team has developed a holistic approach to energy and carbon performance, expanding on the Mayor's Energy Hierarchy. This approach is designed to reduce energy consumption and related CO₂ emissions in the first instance before considering how energy is to be supplied, as per methodology illustrated below.

Each step in the Energy Hierarchy has been followed and carbon savings quantified separately for the 'Lean', 'Clean' and 'Green' scenarios within this statement.

Baseline Energy Consumption & CO₂ Emissions

The strategy considers a Part L 2013 compliant baseline. In order to determine predicted energy and CO_2 figures for dwellings a representative selection of residential units has been modeled using STROMA software, according to the SAP methodology as per Building Regulations Part L requirement.

In order to determine predicted energy and CO₂ figures for the non-domestic areas of the proposed re-development these have been modeled using Integrated Environmental Solutions (IES), Virtual Environment 2014 software. This software calculates the Building CO₂ Emissions Rate (BER) and Notional Target Emission Rate (TER) using the Building Regulations methodology based on the National Calculation Methodology (NCM).

2.1 Baseline Scheme: CO₂ Emissions

Carbon emission factors are based upon the revised SAP10 published figures:

Gas	0.216	kgCO ₂ /kWh
Grid Supplied Electricity	0.233	kgCO ₂ /kWh
Grid Displaced Electricity	0.233	kgCO ₂ /kWh

3 Impact of Passive Design & Energy Efficiency Measures

A key element of the energy strategy has been to maximise the energy efficiency of the building, through passive design and efficient servicing. A summary of the proposed fabric and glazing specification for each area of the development is contained within the tables below:

Element	Dwellings	Commercial areas
External Wall U-Value	0.15 W/m ² K	0.2 W/m ² K
Roof	0.11 W/m ² K	0.15 W/m ² K
Ground Floor	n/a	0.18 W/m ² K
Window incl. frame U-Value	0.73 W/m ² K	1.4 W/m ² K
Glazing g-value	0.63	0.63
Air permeability (dwellings)	3 m³/hr/m² @ 50Pa	10 m³/hr/m² @ 50Pa

The above target building envelope performance values are applicable to the provision, renovation and retention of thermal elements of the proposed redevelopment.

As part of the holistic and integrated design development process, on-going studies will be carried out through detailed design to ensure the optimum façade and building envelope solution is carried forward i.e. the solution considered to provide the best result in terms of predicted: energy consumption, CO₂ emissions and thermal and visual comfort.

The following energy efficiency measures within the building services systems are proposed for the development:

- LTHW Air Source Heat Pump Central Heating plant linked to BMS and include central time control, weather compensation and metering
- Comfort cooling to Retail areas available from high efficiency heatpump units;
- All areas to be fitted with high efficiency lighting. Non-residential areas are anticipated to have time based PIR detectors with PIR/daylight sensing to perimeter zones, where feasible;
- Energy display devices are assumed to be installed monitoring electricity and primary heating fuel to each dwelling;
- Retail areas are to be Shell and Core and will be provided with capped connections to the central heating/cooling systems and domestic hot water to enable future fit out by incoming tenants / operators;
- Energy performance standards for future fit-outs have been assumed for this assessment, including energy efficient general lighting, display lighting, lighting controls, and energy efficient ventilation. A form of green fit-out guidance will be provided to incoming tenants by the Client to detail the fit-out energy performance standards required to deliver the CO₂ savings predicted in this energy strategy;
- Residential ventilation supplied from Mechanical Ventilation Heat Recovery units (MVHR) with low specific fan power and highly efficient heat recovery;
- Variable Speed Drives for pumps and fans will be installed;
- Enhanced pipework and ductwork thermal insulation;
- Measures to reduce water consumption within the building via water efficient fittings and grey water recycling will have an impact on the energy consumption. A reduction in water consumption should result in reduced energy demand due to the reduction in electricity required to pump water, and reduction in energy for heating the domestic hot water (DHW) supply.

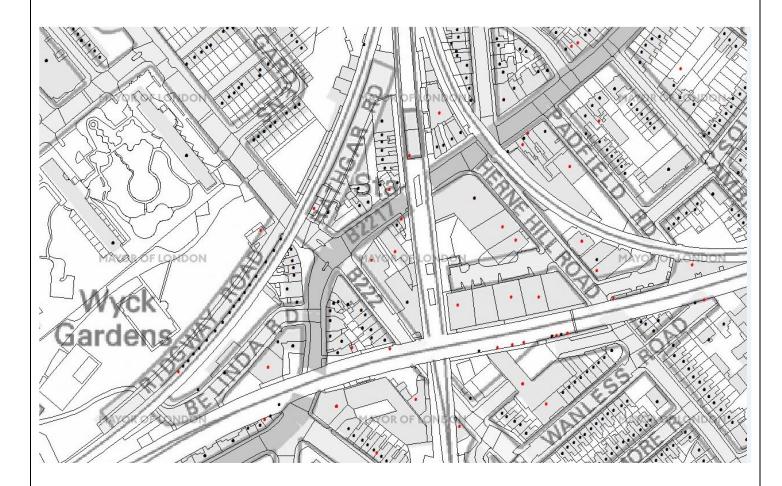
Whilst these are the design standards currently targeted, their achievability will be reviewed through detailed design stages to mitigate the risk of not achieving the overall CO₂ reduction targets, and to take into account any design changes.

4 Assessment of Low Carbon Technologies

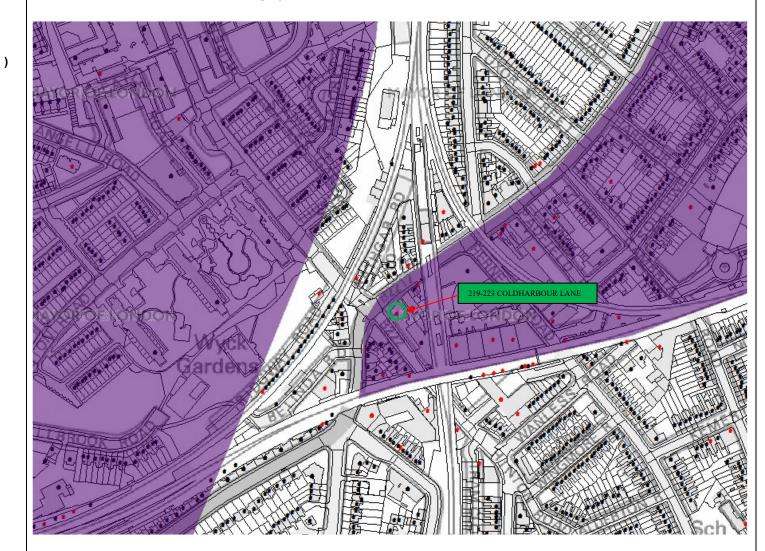
The second stage of the Lean, Clean, Green methodology concerns low-carbon energy ('Clean' solutions) and considers decentralised energy generation, including combined heat and power (CHP).

The following opportunities have been assessed within the development:

- Connection to existing heat networks beyond the site boundary
- Connection to existing low carbon heat distribution networks including combined heat and power (CHP)
- Providing a site-wide heating network including combined heat and power (CHP)


The feasibility study determined a CHP would not be the optimum solution for this development for the flowing reasons:

- The centralised LTHW Heat pump system delivered higher CO₂ reductions when modelled against the CHP as there were less distribution losses and reduced demand.
- The Clean Air Strategy published in March has set stringent targets to cut emissions by 2020 and 2030. The goal is to reduce the harm to human health from air pollution by. It indicates CHP engines should only be used where no adverse effect on air quality can be demonstrated.
- A development of under 300 units is now considered as unviable for a CHP given the above considerations and the deployment of the Fabric First principal which reduces the onsite demand of a building.


4.1 Connection to Existing Heat Network

219-223 Coldharbour Lane is marked with a green circle in the extract from the London Heat Map diagram below. The London Heat Map indicates there are no existing heat networks in the immediate economically viable vicinity of the site.

The area does however fall within future opportunities area as highlighted in purple from the London Heat Map. Connections will be made available within the plant room to take future connection s of district heating system when it becomes available.

5 Assessment of Renewable Technologies

A feasibility study has been carried out to establish the most appropriate local LZC energy source for the building. The study has assessed the natural resources available on site, and analysed the feasibility of each LZC energy source against the building's energy demands.

The following LZC technologies are identified within both the London Plan and BREEAM credit guidance. These technologies have been considered for application for 219-223 Coldharbour Lane Development.

Technology	Y/N	Viability								
Solar thermal	N	Conflicts with CHP								
Solar photovoltaic	Y	Appropriate								
Wind turbines	N	 Location, noise and vibration issues 								
 Biomass single room heaters/stoves Biomass boilers Biomass community heating scheme 	Ν	 Additional deliveries and storage Issues Higher running costs No established supply chain in the area Management of Bi-products 								
 Biomass CHP Natural gas CHP Sewerage gas and other biogases CHP 	N	 Conflicts with gas CHP Additional deliveries and storage issues Higher running costs No established supply chain in the area 								
Ground source heat pumps	N	 No open land for horizontal piping 								
Water source heat	Ν	Unknown ground conditions								
pumps	Ν	 No water source in close 								
 Air source heat pumps 		proximity to the site plus license restrictions and								
	Y	 associated risks Highly efficient ASHP has been considered to provide heating & Domestic hot water to the whole building, while comfort cooling only to commercial spaces. 								
Fuel cells using	N	 No source of hydrogen 								
hydrogen generated		 The required size is not 								
from any of the above		commercially available								
'renewable' sources		 Higher capital costs compare to CHP 								

Pivotal International

An initial assessment has been carried out to determine which technologies are technically, functionally and economically feasible on the site. All technologies appropriate to the site and energy demand of the development have been assessed. Where technologies are not considered appropriate, these have been highlighted in the Table above.

5.1 Low Temperature Hot Water Community Heating System

The community heating system consist of a LTHP Air Source Heat Pump ASHP located in a central plant room, supplying individual ASHPs in individual dwellings to supply the space and DHW requirements. Low temperature hot water systems reduce energy and save money as well as the environment, through reduced carbon emissions. They produce hot water for space heating and DHW at 25 degrees Celsius.

They are used primarily for heating or producing hot water. New ASHPs replace old hot water boilers can achieve efficiencies of over 350%.

This novel configuration significantly decreases the circulation heat losses attributed to conventional hydronic communal heating systems, which typically, have a requirement of a continuous loop of high temperature water supply. This system also beneficially alters the proportion of the DHW and space heating requirements. This technology if further improved with the falling primary Energy Factor (PEF) which connects primary and final energy, indicating how much primary energy is used to generate a unit of electricity, 2.8 for electricity.

Low temperate water flows around the building's main loop at 15-25 degrees to each apartment. The energy input to this loop is from an onsite heat pump. Each apartment has it's own mini loop where an individual heap pump produces heated water to the required temperature. The water will then also be supplied to radiators and, if required for the retail units, be passed to fan coils. As this water in the heat network is at ambient temperatures loses can be as low as 2%.

This results in more comfortable temperatures within apartments and reduced overheating in communal areas - both common challenges that face conventional heating systems within modern apartment blocks. Additionally, the cost of heating system losses is no longer spread across all residents, meaning they only pay for the heating they use.

The community heating system has a number of benefits in addition to the energy saving potential of low temperature heat networks.

- The improved comfort experienced by occupants particularly in the summertime avoiding apartment over-heating risk, reduced corridor temperatures.
- provision of heating hot water via a 2-pipe system with no requirement for refrigerant pipe work or leak detection as everything is water based.
- Cooling will only be provided to commercial units
- Significantly smaller Plant rooms and the potential for modular design.
- Implementation of the London Plan requirement for zero-carbon designs

5.2 Viability of Solar Photovoltaic

In the London area there is an annual average solar energy availability of 1MWh/M² at the optimum (south facing) angle of 30° from the horizontal plane. The amount of this energy that can be utilised is dependent upon the availability of un-shaded roof space and efficiency of the solar panels considered whilst considering the value of other environmental measures such as biodiversity roofs or other measures to reduce the impact of the heat island.

The potential locations of solar panels have been investigated in conjunction with the Architect, Structural Engineer and Building Services Engineers, to identify any aesthetic, safety and structural implications. A roof mounted system has been considered, and the study has determined that the main roof area is the only suitable space for locating panels whilst optimising cost viability.

The roof in this location is likely to also accommodate some plant, but is accessible for maintenance, and is currently deemed 100% un-shaded by surrounding buildings over the year.

Good practice efficiency panels have been considered within this study (18.2% module efficiency). An indicative PV array delivering 8,084kWh/year is proposed to be located on the roof, leaving additional space for maintenance access and to prevent overshadowing. This relates to approximately 44no 230Wp panels. Appendix C illustrates the roof layout and anticipated location of the current PV proposal which considers orientation and other requirements/beneficial uses of roof space.

The panels are currently proposed to be mounted on a frame or preformed system at 0° and be south-west facing, an optimised orientation given the building orientation and the need for reduced height given sensitive views from surroundings.

Pivotal International

The PV is to be located away from the immediate vicinity of any locally roof mounted ventilation system, plant and raised roof light. Design details to be further investigated during detailed design.

The electrical output from the PV will be synchronized with the mains supply for the building and directly reduce the electricity demand from the national grid to the Landlord areas. It is not anticipated that the PV panels will produce more electricity than is continually used within the landlord areas however final details will be considered for export arrangements should the need arise during detail design.

The predicted energy generation and related CO_2 savings of applying a solar PV system can be seen in the Table below:

Technology	Collector Area	Electricity Generated	Energy saving	CO2 Savings
	(m²)	(kWh/yr)	(kWh/yr)	(tCO ₂ /yr)
10kWp PV System	48	8,084	8,084	4.08

The estimated technical and commercial feasibility of a photovoltaic system for the proposed re-development is presented in the table below:

Indicative Capital Cost (£)	£ 18,000.00
Indicative Maintenance Costs (£)	£4000 (over the 20-year period)
· · · ·	NB: Assumes 1no inverter
Indicative Payback (years)	8-12 years
, , , , , , , , , , , , , , , , , , ,	NB: Lifetime of panel = approx. 20 years
Land Use	The panels are to be roof mounted and
	space would be required for the inverter
	within a plant room or cupboard
Local Planning Requirements	Appropriately designed Photovoltaic arrays
5 1	mounted on flat roofs are typically looked
	upon favorably by local planners and the
	GLA.
Noise	None
Life cycle cost / lifecycle impact of the	PV systems typically result in life-cycle CO ₂
potential specification in terms of carbon	savings (typical embodied CO ₂ payback is 3-
emissions	6 years) Lifecycle cost savings are
	dependent on FIT rates at the time of
	installation

6 Conclusions

The tables below demonstrate the predicted CO2 emissions for the anticipated total development.

Table 1: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for domestic buildings

	Carbon Dioxide Emissions for domestic buildings (Tonnes CO2 per annum)					
	Regulated	Unregulated				
Baseline: Part L 2013 of the Building Regulations Compliant Development	8	10				
After energy demand reduction	6	9				
After heat network / CHP	6	9				
After renewable energy	1	9				

Table 2: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for domestic buildings

	Regulated domestic c	arbon dioxide savings		
	(Tonnes CO ₂ per annum)	(%)		
Savings from energy demand reduction	2	23%		
Savings from heat network / CHP	0	0%		
Savings from renewable energy	5	60%		
Cumulative on site savings	6	83%		
Annual savings from off-set payment	1	-		
	(Tonne	es CO2)		
Cumulative savings for off-set payment	39	-		
Cash in-lieu contribution (£)	2,348			

The total predicted regulated CO2 savings achieved by the energy strategy is up to 6 tonnes CO2 per annum when compared against the Part L 2013 baseline scenario.

The table above shows the breakdown in predicted savings for each stage of the energy hierarchy. At this stage of the design the current predicted savings equate up to 83% reduction in regulated scheme CO_2 emissions over the Part L 2016 baseline building emissions, achieving the London Plan target for carbon reduction. The cumulative savings for the offset payment over 30years is 39 Tonne CO2, which at £60/Tonne equate to £2,348. With the

revised cost of **£95/Tonne** being introduced in the 2020 London Plan the Cash in lieu contribution of **£3,705** for the development.

Table 3: Carbon Dioxide Emissions after each stage of the Energy Hierarchy for non-domestic buildings

	Carbon Dioxide Emissions (Tonnes CO2	-
	Regulated	Unregulated
Baseline: Part L 2013 of the Building Regulations Compliant Development	14	71
After energy demand reduction	5	71
After heat network / CHP	5	71
After renewable energy	3	71

Table 4: Regulated Carbon Dioxide savings from each stage of the Energy Hierarchy for non-domestic buildings

	Regulated non-domesti	c carbon dioxide savings
	(Tonnes CO ₂ per annum)	(%)
Savings from energy demand reduction	8	61%
Savings from heat network / CHP	0	0%
Savings from renewable energy	3	20%
Total Cumulative Savings	11	81%

Table 5: Shortfall in regulated carbon dioxide savings

	Annual Shortfall (Tonnes CO ₂)	Cumulative Shortfall (Tonnes CO ₂)
Total Target Savings	5	-
Shortfall	-6	-190
Cash in-lieu contribution (£)	-11,427	-

Pivotal International

7 Site Wide Savings

	Total regulated emissions (Tonnes CO2 / year)	CO2 savings (Tonnes CO2 / year)	Percentage savings (%)
Part L 2013 baseline	21		
Be lean	11	10	48%
Be clean	11	0	0%
Be green	4	7	34%
	-	CO2 savings off-set (Tonnes CO2)	-
Off-set	-	-153	-

8 Appendix

8.1 Off-Site Construction

Offsite Construction: is a fundamental change to the design philosophy approach. It requires designing buildings layout to combine multiple products and disciplines such building envelope, mechanical & Electrical services in one package which can be, as far as is feasible, fabricated, assembled and tested off site and delivered as a plug and play product. This principal is applied to prefabricated modular construction. The Off-Site Construction (OSC) principle is more commonly being adopted with investment in the design aspect of projects which integrate off-site manufacturing and assembly from both financial and staff upskilling perspectives.

Offsite Construction delivers of Low-carbon prefabricated modular construction and fabrication systems. Using prefabricated engineered systems for buildings and ancillary services. Offsite Construction can reduce the embodied energy by up to 30%.

The Key benefits are:

Design with disassembly in mind will enhance the reuse of materials. This will effectively increase their life-span and the energy efficiency of the plants in which they are used and will offer significant opportunities for embodied energy reductions.

Cradle to Cradle: Also known as regenerative design. This is a biomimetic approach to the design of products and systems that industry on nature's processes viewing materials as nutrients circulating in healthy, safe metabolisms. The reuse of materials is focused on during

the design of products, Manufacturers no longer sell their goods, but rather they provide them and then take them back in order to reuse them.

It takes into consideration both economic as well as environmental and social aspects when choosing materials and building materials. It allows for a wide range of perspectives on the creation and use of products.

Efficiency and predictability: By building offsite, delivery of project Work Packages can be guaranteed to be on time and to the highest quality, as mitigating circumstances such as bad weather do not delay the project and the majority of testing and certification can be carried out in a controlled environment.

Quality assurance: The quality of finished product is improved as the construction is undertaken in a controlled factory environment which allows for a higher quality finish and inspection methodology to be far more extensive. Reduced defects and snagging (up to 80%) will have a significant positive impact on the delivery of the project within the scheduled timeframe.

Sustainability: Offsite construction requires less heavy machinery and less energy. Transporting the finished product to the site also uses minimal vehicles, and wastage is minimized, as material requirements can be more accurately calculated, allowing the company to make savings by buying in bulk. Material can also be recycled in a more efficient manner. A company policy to ensure all waste conforms to the principals of reuse and recycle which can reduce waste by up to 20% and divert up to 85% of the waste streams from landfill.

Health & Safety: The factory is a far more predictable setting than the physical construction site, which eliminates the variables of weather and visibility. Factory conditions' replicability makes errors much less likely. Most of onsite construction's most dangerous hazards: like fall from height and equipment accidents, are not an issue in the factory. A policy of pre-slung deliveries to site reduces risk through ensuring there is not requirement for operators onsite to prepare loads for lifting. This can lead to up to 80% improvement in on-site Health & Safety outcomes.

Reduced labour: Factory located fabrication and construction requires less labour for comparable site-based projects. Also, reductions of up to 75 % on-site labour can be achieved.

Reduced training: teaching workers to perform their role in an offsite build is much simpler and faster. Transferring the construction process to a factory setting essentially turns building, mechanical and electrical works into a manufacturing process. Less training means faster delivery.

Less local disruption and positive effect on local communities and environment: Reduced onsite works will reduces disruption to residents from the noise and air pollution of heavy machinery and equipment. Additionally, construction and delivery vehicles travelling to and from the site can cause traffic delays blocking parking spaces and access routes. This can be a particular problem in constrained areas of SAC and tourism. The potential effects civil works can have can be mitigated by offsite construction allaying fears of local residents as construction works and cranes can be an eyesore therefore the reduction of plant time onsite can be beneficial to all stakeholders. Up to 80% improvement can be achieved.

Project scheduling: OSC allows removal of aspects of the mechanical and electrical installation from the critical path of the construction programme. To achieve this a number of key processes will take place:

- Early engagement with site installation crews at design phase for prior lessons learned session
- Digital rehearsal of installation using latest 4D scheduling software
- Installation sequence collaboration session with project and site install team before first deliveries
- Innovative designs adopted and implemented
- Post project competition lessons learned reviews

Pivotal are now using historic data from previous projects to develop a model to assess the carbon footprint of the Off-Site Construction component of sections or whole projects both new developments and retrofitting.

All other waste material generated during construction will be contained, transported, and managed in accordance with all Waste Management legislation. All the contractors used should adhere to the reuse & recycle principals outlined. All works designed and constructed will be conscious of the determination for energy use reduction, carbon footprint reduction, energy efficiency, energy recovery and installation of renewable energy systems, where deemed feasible.

8.2 BRUKL & SAP Reports

Pivotal International

8.3 PV Array layout

Pivotal International

		U	ser Details:						
Assessor Name: Software Name:	Stroma FSAP 2012		Softwa	a Numb are Vers			Versio	n: 1.0.4.23	
A daha a a	1 Red Elet 210 222		erty Address:		h lunat	ion ION			
Address : 1. Overall dwelling dimen	1 Bed Flat, 219-223 (Colonarbo	ur Lane, Louç	nboroug	n Junci	ION, LOP	NDON		
Ground floor		[Area(m²) 51.7	(1a) x	Av. Hei 2	i ght(m) 5	(2a) =	Volume(m ³ 129.25	') (3a)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e)	+(1n)	51.7	(4)					
Dwelling volume		_		(3a)+(3b)-	+(3c)+(3d)+(3e)+	.(3n) =	129.25	(5)
2. Ventilation rate:									
Number of chimneys Number of open flues		0	• 0 • 0] = [total 0 0		40 = 20 =	0 0	(6a) (6b)
Number of intermittent fan	s	-	_		2	x 1	0 =	20	` (7a)
Number of passive vents							0 =	-	
-					0		10 =	0	(7b)
Number of flueless gas fire)+(6b)+(7a)+	(7b)+(7c) =		0			0 anges per ho	(7c) our (8)
If a pressurisation test has be Number of storeys in the Additional infiltration Structural infiltration: 0.2 if both types of wall are pre	en carried out or is intended e dwelling (ns) 25 for steel or timber fr sent, use the value corresp	d, proceed to ame or 0.3	(17), otherwise of 35 for masonr	y constru	om (9) to (16)	·1]x0.1 =	0 0 0	(9) (10) (11)
deducting areas of opening If suspended wooden flo		ed) or 0.1 (sealed), else	enter 0			[0	(12)
If no draught lobby, ente		, (,,					0	(13)
Percentage of windows	and doors draught str	ipped						0	(14)
Window infiltration			0.25 - [0.2	x (14) ÷ 10	= [00			0	(15)
Infiltration rate			(8) + (10)	+ (11) + (12	2) + (13) +	+ (15) =		0	(16)
Air permeability value, q	•	•	•	•	etre of e	nvelope	area	5	(17)
If based on air permeability Air permeability value applies					o hoing ur	ad		0.4	(18)
Number of sides sheltered		been done of	r a degree all pe	meaning R	s being us	eu	ſ	2	(19)
Shelter factor			(20) = 1 -	0.075 x (19	9)] =			0.85	(20)
Infiltration rate incorporatir	ng shelter factor		(21) = (18)	x (20) =				0.34	(21)
Infiltration rate modified for	r monthly wind speed						•		
Jan Feb M	/lar Apr May	Jun	Jul Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7								
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8 3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)	im ÷ 4								
(22a)m= 1.27 1.25 1.	23 1.1 1.08	0.95 0	0.95 0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allow	ing for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
	0.44	0.43	0.42	0.38	0.37	0.33	0.33	0.32	0.34	0.37	0.39	0.4		
		c <i>tive air</i> al ventila	-	rate for ti	he appli	cable ca	se						0	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
				iency in %						, , ,			0	(200) (23c)
			-	-	-					2b)m + (23b) x [l 1 – (23c)	-	(200)
(24a)m=		0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	covery (N	и ЛV) (24b	m = (22)	1 2b)m + (1	23b)			
, (24b)m=		0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	ntilation c	or positiv	e input v	ventilatio	n from o	outside					
i	f (22b)n	n < 0.5 ×	(23b),	then (24c	c) = (23b); otherv	wise (24	c) = (22k	o) m + 0.	.5 × (23b))	-		
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous						0 =1				
	, ,		<u>`</u>	m = (22k)	,	,	, <u> </u>	<u> </u>	, <u> </u>	<u> </u>	0.57	0.50		(244)
(24d)m=		0.59	0.59	0.57	0.57	0.55	0.55	0.55	0.56	0.57	0.57	0.58		(24d)
(25)m=	0.6	change 0.59	rate - ei 0.59	nter (24a) or (24b 0.57	o) or (24)	c) or (24 0.55	d) in box	x (25)	0.57	0.57	0.58	l	(25)
(25)11=	0.8	0.59	0.59	0.57	0.57	0.55	0.55	-0.55	0.56	0.57	0.57	0.58		(23)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
ELEN		Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/	K)	k-value		∖Xk J/K
Window	ws Type		(111-)			, r 9		/[1/(1.4)+		11.93		KJ/111-•1		(27)
	ws Type					3.92		/[1/(1.4)+	L L	5.2	H			(27)
Floor	ws rype	. 2						r			H,			(27)
Walls 1		40-	-		\	51.7		0.13		6.721	╘┤┟		╡┝━	
Walls 1		19.7		9		10.75		0.18		1.94			\dashv	(29)
Walls 7		14.7		3.92		10.83		0.18		1.95			\dashv	(29)
		20		0		20	×	0.18	=	3.6				(29)
		lements	, 111-			106.2					— , r			(31)
Party v						20	×	0	=	0			╡ ┝━	(32)
Party c	-					51.7					l		_	(32b)
	I wall **			<i></i>		77			<i>TE (4 / 1 - 1 - 1</i>	1.0.047	. [(32c)
				effective wil nternal wall			ated using	formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	1 3.2	
Fabric	heat los	s, W/K :	= S (A x	U)				(26)(30)) + (32) =				31.33	(33)
Heat ca	apacity	Cm = S((Axk)						((28)	(30) + (32	2) + (32a).	(32e) =	11416.3	(34)
Therma	al mass	parame	ter (TM	⊃ = Cm ÷	TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	•	sments wh ad of a de		etails of the ulation.	constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in T	able 1f		
Therma	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						5.31	(36)
if details	of therma	al bridging	are not kr	nown (36) =	= 0.05 x (3	1)								
	abric he								(33) +	(36) =			36.64	(37)
Ventila	tion hea		i	d monthly				1	· · ·	= 0.33 × (25)m x (5		I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	25.43	25.27	25.11	24.38	24.24	23.6	23.6	23.49	23.85	24.24	24.52	24.81		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	62.07	61.91	61.76	61.02	60.89	60.25	60.25	60.13	60.49	60.89	61.16	61.46		
Heat lo	ss para	ımeter (H	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁ · (4)	12 /12=	61.02	(39)
(40)m=	1.2	1.2	1.19	1.18	1.18	1.17	1.17	1.16	1.17	1.18	1.18	1.19		
Numbe	or of day	vs in mo	nth (Tab	le 12)						Average =	Sum(40)1	12 /12=	1.18	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
I		1	1					1						
4. Wa	ter heat	ting ene	rgy requ	irement:								kWh/yea	ar:	
if TF. if TF.	A > 13.9 A £ 13.9	9, N = 1	+ 1.76 x	[1 - exp						TFA -13.		74		(42)
				ge in litre usage by s						se target o		5.53		(43)
not more	that 125	litres per	person pe	r day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres pei	r day for ea	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	83.08	80.06	77.04	74.02	71	67.98	67.98	71	74.02	77.04	80.06	83.08	_	-
Energy o	content of	hot water	used - ca	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)) Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		906.36	(44)
(45)m=	123.21	107.76	111.2	96. <mark>9</mark> 5	93.02	80.27	74.38	85.36	86.37	100.66	109.88	119.32		
lf instant	anoous w	vator boati	na at noin	t of use (no	bot water	r storage)	enter 0 in	boyes (16		Tota <mark>l = Su</mark>	m(45) ₁₁₂ =	-	1188.38	(45)
(46)m=	18.48	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
· · ·	storage		10.00	14.04	13.95	12.04	11.10	12.0	12.90	15.1	10.40	17.9		(40)
Storage	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
	•	•		nk in dw	•			· /		· · · (0) : · (47)			
	ise if no storage		not wate	er (this in	iciudes i	nstantar	ieous co	iioa iamo	ers) ente	er 'U' in (47)			
	•		eclared I	oss facto	or is kno	wn (kWł	n/day):				,	0		(48)
Tempe	rature f	actor fro	m Table	2b								0		(49)
Energy	lost fro	m watei	· storage	, kWh/ye	ear			(48) x (49)) =			0		(50)
				cylinder I om Tabl										(54)
		-	ee secti				iy)					0		(51)
		from Ta										0		(52)
Tempe	rature f	actor fro	m Table	2b								0		(53)
			-	e, kWh/y€	ear			(47) x (51)	x (52) x (53) =		0		(54)
	. ,	(54) in (5										0		(55)
	storage	loss cal	culated	for each	month		i	((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0	. 11	(56)
	r contains		a solar sto 1	rage, (57)ı	m = (56)m I		H11)] ÷ (5 I	· ·	/)m = (56)	m where (H11) is fro I	m Appendix	Η	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

	cuit loss (ar				50)						0		(58)
	cuit loss ca d by factor f			•	,	· ·	``'		r thermo	stat)			
				0				0	0	0	0		(59)
Combi los	calculated	for each	month ((61)m =	(60) ÷ 36	65 x (41)							
(61)m= 42	1	39.26	36.5	36.18	33.52	34.64	36.18	36.5	39.26	39.48	42.34		(61)
Total heat	required for	water h	eating ca	alculated	l for eac	h month	(62)m =	0.85 x ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
	5.55 144.61	150.46	133.45	129.2	113.79	109.02	121.54	122.88	139.92	149.36	161.66	() (-)	(62)
Solar DHW ir	put calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contributi	ion to wate	er heating)		
(add additi	onal lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0 0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	n water hea	iter	•					-		•			
(64)m= 165	5.55 144.61	150.46	133.45	129.2	113.79	109.02	121.54	122.88	139.92	149.36	161.66		
							Outp	out from wa	ater heater	r (annual)₁	12	1641.44	(64)
Heat gains	from water	heating,	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)m	n] + 0.8 >	(46)m	+ (57)m	+ (59)m]	
(65)m= 51	55 45.04	46.79	41.36	39.97	35.07	33.39	37.43	37.85	43.28	46.41	50.26		(65)
include (57)m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Interna	ai gains (see	e Table {	5 and 5a):									
Metabolic	gains (Table	e 5), Wat	tts										
	an Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 87	.01 87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01		(66)
Ligh <mark>ting g</mark> a	ins (calcula	ted in A	opendix	L. equat	ion I 9 o						-		
(67)m= 13	.52 12.01	F		-, • • •		r L9a), a	lso see ⁻	Table 5					
	12.01	9.77	7.39	5.53	4.67	r L9a), a 5.04	lso see 6.55	Table 5 8.8	11.17	13.03	13.9		(67)
Appliances	gains (calc	1		5.53	4.67	5.04	6.55	8.8		13.03	13.9		(67)
· · ·		1		5.53	4.67	5.04	6.55	8.8		13.03 134.94	13.9 144.96		(67) (68)
(68)m= 151	gains (calc	ulated ir 149.26	Append 140.81	5.53 dix L, eq 130.16	4.67 uation L 120.14	5.04 13 or L1 113.45	6.55 3a), alsc 111.88	8.8 see Ta 115.84	ble 5 124.28				
(68)m= 15 Cooking g	gains (calc .65 153.22 ains (calcula	ulated ir 149.26	Append 140.81 ppendix	5.53 dix L, eq 130.16 L, equat	4.67 uation L 120.14 tion L15	5.04 13 or L1 113.45 or L15a)	6.55 3a), alsc 111.88), also se	8.8 see Ta 115.84	ble 5 124.28				
(68)m= 15 Cooking ga (69)m= 31	gains (calc .65 153.22 ains (calcula	tulated in 149.26 ated in A 31.7	Append 140.81 ppendix 31.7	5.53 dix L, eq 130.16 L, equat	4.67 uation L 120.14 tion L15	5.04 13 or L1 113.45 or L15a)	6.55 3a), alsc 111.88), also se	8.8 o see Ta 115.84 ee Table	ble 5 124.28 5	134.94	144.96		(68)
(68)m= 15 ⁴ Cooking ga (69)m= 31 Pumps and	a gains (calc .65 153.22 ains (calcula .7 31.7	tulated in 149.26 ated in A 31.7	Append 140.81 ppendix 31.7	5.53 dix L, eq 130.16 L, equat	4.67 uation L 120.14 tion L15	5.04 13 or L1 113.45 or L15a)	6.55 3a), alsc 111.88), also se	8.8 o see Ta 115.84 ee Table	ble 5 124.28 5	134.94	144.96		(68)
(68)m= 15 Cooking ga (69)m= 31 Pumps and (70)m= 3	a gains (calc .65 153.22 ains (calcula .7 31.7 d fans gains	ated in A 31.7 (Table \$	Appendix 140.81 ppendix 31.7 5a) 3	5.53 dix L, eq 130.16 L, equat 31.7 3	4.67 uation L 120.14 ion L15 31.7 3	5.04 13 or L1 113.45 or L15a) 31.7	6.55 3a), also 111.88), also se 31.7	8.8 5 see Ta 115.84 5e Table 31.7	ble 5 124.28 5 31.7	134.94 31.7	144.96 31.7		(68) (69)
(68)m= 15 Cooking ga (69)m= 31 Pumps and (70)m= 5 Losses e.g	a gains (calc .65 153.22 ains (calcula .7 31.7 d fans gains 3 3	ated in A 31.7 (Table \$	Appendix 140.81 ppendix 31.7 5a) 3	5.53 dix L, eq 130.16 L, equat 31.7 3	4.67 uation L 120.14 ion L15 31.7 3	5.04 13 or L1 113.45 or L15a) 31.7	6.55 3a), also 111.88), also se 31.7	8.8 5 see Ta 115.84 5e Table 31.7	ble 5 124.28 5 31.7	134.94 31.7	144.96 31.7		(68) (69)
$(68)m = 15^{\circ}$ Cooking ga $(69)m = 31^{\circ}$ Pumps and $(70)m = 5^{\circ}$ Losses e.g $(71)m = -65^{\circ}$	a gains (calc .65 153.22 ains (calcula .7 31.7 d fans gains 3 3 . evaporatio	culated in 149.26 ated in A 31.7 (Table 5 3 on (nega -69.61	Appendix 140.81 ppendix 31.7 5a) 3 tive valu	5.53 dix L, eq 130.16 L, equat 31.7 3 es) (Tab	4.67 uation L 120.14 iion L15 31.7 3 le 5)	5.04 13 or L1 113.45 or L15a) 31.7 3	6.55 3a), also 111.88), also se 31.7 3	8.8 5 see Ta 115.84 ee Table 31.7 3	ble 5 124.28 5 31.7 3	134.94 31.7 3	144.96 31.7 3		(68) (69) (70)
(68)m = 15 $Cooking ga$ $(69)m = 31$ $Pumps and$ $(70)m = 5$ $Losses e.c$ $(71)m = -65$ $Water hea$	gains (calc .65 153.22 ains (calcula .7 31.7 d fans gains 3 3 evaporation .61 -69.61	culated in 149.26 ated in A 31.7 (Table 5 3 on (nega -69.61	Appendix 140.81 ppendix 31.7 5a) 3 tive valu	5.53 dix L, eq 130.16 L, equat 31.7 3 es) (Tab	4.67 uation L 120.14 iion L15 31.7 3 le 5)	5.04 13 or L1 113.45 or L15a) 31.7 3	6.55 3a), also 111.88), also se 31.7 3	8.8 5 see Ta 115.84 ee Table 31.7 3	ble 5 124.28 5 31.7 3	134.94 31.7 3	144.96 31.7 3		(68) (69) (70)
(68)m = 15 Cooking ga (69)m = 31 Pumps and (70)m = -65 Losses e.g (71)m = -65 Water hea (72)m = 69	gains (calculation) .65 153.22 ains (calculation) .7 31.7 d fans gains 3 3 .9 evaporation .61 -69.61 ting gains (7)	culated in A 149.26 ated in A 31.7 (Table 5 on (nega -69.61 Fable 5) 62.89	Appendix 140.81 ppendix 31.7 5a) 3 tive valu -69.61	5.53 dix L, eq 130.16 L, equat 31.7 3 es) (Tab -69.61	4.67 uation L 120.14 iion L15 31.7 3 le 5) -69.61 48.71	5.04 13 or L1 113.45 or L15a) 31.7 3 -69.61 44.88	6.55 3a), also 111.88), also se 31.7 3 -69.61	8.8 5 see Ta 115.84 ee Table 31.7 3 -69.61 52.56	ble 5 124.28 5 31.7 3 -69.61 58.18	134.94 31.7 3 -69.61 64.45	144.96 31.7 3 -69.61 67.55		(68) (69) (70) (71)
(68)m = 15 $Cooking ga$ $(69)m = 31$ $Pumps and$ $(70)m = 5$ $Losses e.c$ $(71)m = -65$ $Water hea$ $(72)m = 69$ $Total inter$	gains (calcula .65 153.22 ains (calcula .7 31.7 d fans gains 3 3 .evaporation .61 -69.61 ting gains (7 29 67.03	culated in A 149.26 ated in A 31.7 (Table 5 on (nega -69.61 Fable 5) 62.89	Appendix 140.81 ppendix 31.7 5a) 3 tive valu -69.61	5.53 dix L, eq 130.16 L, equat 31.7 3 es) (Tab -69.61	4.67 uation L 120.14 iion L15 31.7 3 le 5) -69.61 48.71	5.04 13 or L1 113.45 or L15a) 31.7 3 -69.61 44.88	6.55 3a), also 111.88), also se 31.7 3 -69.61 50.3	8.8 5 see Ta 115.84 ee Table 31.7 3 -69.61 52.56	ble 5 124.28 5 31.7 3 -69.61 58.18	134.94 31.7 3 -69.61 64.45	144.96 31.7 3 -69.61 67.55		(68) (69) (70) (71)
(68)m = 15 $Cooking ga$ $(69)m = 31$ $Pumps and$ $(70)m = 5$ $Losses e.c$ $(71)m = -65$ $Water hea$ $(72)m = 69$ $Total inter$	gains (calculation) .65 153.22 ains (calculation) .7 31.7 d fans gains .3 3 .4 -69.61 ting gains (7 .29 67.03 rnal gains = .56 284.36	culated in A 149.26 ated in A 31.7 (Table 5 0n (nega -69.61 Fable 5) 62.89	Appendix 140.81 ppendix 31.7 5a) 3 tive valu -69.61 57.44	5.53 dix L, eq 130.16 L, equat 31.7 3 es) (Tab -69.61 53.73	4.67 uation L 120.14 iion L15 31.7 3 ile 5) -69.61 48.71 (66)	5.04 13 or L1 113.45 or L15a) 31.7 3 -69.61 44.88 m + (67)m	6.55 3a), also 111.88), also se 31.7 3 -69.61 50.3 0 + (68)m -	8.8 5 see Ta 115.84 52.56 (69)m + (6)	ble 5 124.28 5 31.7 3 -69.61 58.18 (70)m + (7	134.94 31.7 3 -69.61 64.45 1)m + (72)	144.96 31.7 3 -69.61 67.55 m		 (68) (69) (70) (71) (72)

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	3.92	x	11.28	x	0.63	x	0.7	=	13.52	(75)
Northeast 0.9x	0.77	x	3.92	x	22.97	×	0.63	×	0.7	=	27.51	(75)

		-		_	·							
Northeast 0.9x	0.77	×	3.92	×	41.38		0.63		0.7	=	49.57	(75)
Northeast 0.9x	0.77	×	3.92	×	67.96	x	0.63	×	0.7	=	81.41	(75)
Northeast 0.9x	0.77	x	3.92	×	91.35	x	0.63	×	0.7	=	109.43	(75)
Northeast 0.9x	0.77	x	3.92	×	97.38	x	0.63	×	0.7	=	116.67	(75)
Northeast 0.9x	0.77	x	3.92	x	91.1	x	0.63	x	0.7	=	109.14	(75)
Northeast 0.9x	0.77	x	3.92	x	72.63	x	0.63	×	0.7	=	87.01	(75)
Northeast 0.9x	0.77	x	3.92	×	50.42	x	0.63	x	0.7	=	60.4	(75)
Northeast 0.9x	0.77	x	3.92	x	28.07	x	0.63	_ x [0.7	=	33.62	(75)
Northeast 0.9x	0.77	x	3.92	x	14.2	x	0.63	x	0.7	=	17.01	(75)
Northeast 0.9x	0.77	x	3.92	x	9.21) x [0.63	_ x [0.7	=	11.04	(75)
Southwest _{0.9x}	0.77	x	9	x	36.79] [0.63	×	0.7	=	101.2	(79)
Southwest _{0.9x}	0.77	x	9	x	62.67] [0.63	×	0.7	=	172.38	(79)
Southwest _{0.9x}	0.77	x	9	×	85.75	ĪĒ	0.63	×	0.7	=	235.86	(79)
Southwest _{0.9x}	0.77	x	9	x	106.25	ĪĒ	0.63	_ × [0.7	=	292.25	(79)
Southwest _{0.9x}	0.77	×	9	×	119.01] [0.63	_ × [0.7	=	327.34	(79)
Southwest _{0.9x}	0.77	x	9	x	118.15	ĪĒ	0.63	_ × [0.7	=	324.97	(79)
Southwest _{0.9x}	0.77	×	9	x	113.91	ÌĒ	0.63	_ × [0.7	=	313.31	(79)
Southwest0.9x	0.77	x	9	X	104.39		0.63	x	0.7	=	287.13	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9	x	92.85	ĪĒ	0.63	×	0.7	- 1	2 <mark>55.39</mark>	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9	x	69.27	ĪĪ	0.63	×	0.7	=	190.52	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	Ī×	9	T x	44.07	i i	0.63	×	0.7	=	121.22	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	Ī×	9	×	31.49	ίĒ	0.63	×	0.7		86.61	(79)
Sola <mark>r gains in</mark>	watts, calcul	ated	for each mo	nth		(83)m =	= Sum(74)m .	<mark>(8</mark> 2)m				
(83)m= 114.72	199.9 285	5.44	373.66 436.	77 4	41.64 422.45	374.1	3 315.79	224.15	138.22	97.65		(83)
Total gains – i	nternal and s	solar	(84)m = (73)	m + (83)m , watts							
(84)m= 401.28	484.26 559	9.45	631.41 678.	29 6	67.26 637.93	594.9	97 545.1	469.88	402.76	376.15		(84)
7. Mean inte	rnal temperat	ture ((heating seas	son)								
Temperature	during heati	ng p	eriods in the	living	area from Tal	ble 9, [·]	Th1 (°C)				21	(85)
Utilisation fac	ctor for gains	for li	iving area, h [.]	1,m (s	ee Table 9a)							
Jan	Feb M	1ar	Apr M	ay	Jun Jul	Au	g Sep	Oct	Nov	Dec		
(86)m= 0.99	0.98 0.5	96	0.89 0.7	5	0.56 0.41	0.46	0.71	0.93	0.99	1		(86)
Mean interna	l temperatur	e in l	iving area T	(follo	ow steps 3 to 7	7 in Ta	able 9c)					
(87)m= 19.85	<u> </u>	.35	20.68 20.8	<u> </u>	20.98 21	20.9	<u> </u>	20.64	20.18	19.81		(87)
	during heati	na na	eriods in rest	of dv	velling from Ta	hle 9	 Th2 (°C)					
(88)m= 19.92	1 <u> </u>	.92	19.94 19.9		19.95 19.95	19.9		19.94	19.93	19.93		(88)
								-	1		l	
(89)m= 0.99	<u> </u>	for r	0.86 0.6	<u> </u>	,m (see Table 0.48 0.32	9a) 0.36	0.62	0.9	0.98	0.99		(89)
									0.90	0.99		(00)
Mean interna	I temperatur	- 1	1		T2 (follow ste	r –	- I I	,		40.0-	l	(00)
(00)	1 40 - 0 -	40 '							1 10 0	10 00		
(90)m= 18.41	18.72 19	.13	19.59 19.8	34	19.94 19.95	19.9		19.55	18.9 ng area ÷ (4	18.36	0.5	(90) (91)

Moon internal tompo	ratura (fa	r tho wh	olo dwol	lling) – fl		. (1 fl	Δ) γ Τ2					
Mean internal tempe (92)m= 19.14 19.4	19.75	20.14	20.37	20.46	20.47	+ (1 – 1L 20.47	20.42	20.1	19.55	19.09		(92)
Apply adjustment to					-	_						· · ·
(93)m= 19.14 19.4	19.75	20.14	20.37	20.46	20.47	20.47	20.42	20.1	19.55	19.09		(93)
8. Space heating req	uirement											
Set Ti to the mean in				ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the utilisation factor f	1 [–] –	<u> </u>								_		
Jan Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation factor for g (94)m= 0.99 0.98	ains, nm	0.86	0.71	0.52	0.36	0.41	0.66	0.9	0.98	0.99		(94)
Useful gains, hmGm				0.52	0.30	0.41	0.00	0.9	0.90	0.99		(04)
(95)m= 397.24 472.88	, VV <u>– (</u> 9.	545.2	484.05	345.93	232.44	243.21	360.14	425.24	394.25	373.29		(95)
Monthly average exte								.20.2 .	001120	010120		()
(96)m= 4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate for me	an intern	al tempe	erature,	Lm , W =	i =[(39)m :	r [(93)m	– (96)m]				
(97)m= 920.96 897.48	818.15	685.66	528.03	353.11	233.44	244.96	382.6	- 578.51	761.27	915.21		(97)
Space heating requir	ement fo	r each m	nonth, k\	Nh/mon	th = 0.02	24 x [(97))m – (95)m] x (4′	1)m			
(98)m= 389.65 285.33	215.58	101.13	32.73	0	0	0	0	114.03	264.26	403.19		
					-	Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	1805.89	(98)
Space heating requir	ement in	kWh/m ²	/year								34.93	(99)
9a. Energy requireme	nts – Ind	ividu <mark>al h</mark>	eating s	vstems i	ncluding	micro-C	HP)					
Space heating:		vide ai ii		yotorno r								
Fraction of space he	at from s	econdary	v/sunnle	mentary							0	(201)
			yrouppic	memary	system						0	(201)
Fraction of space he	at from m			mentary		(202) = 1 -	- (201) =				1	(201)
		nain syst	em(s)	mentary		(202) = 1 - (204) = (20		(203)] =				
Fraction of total heat	ing from	nain syst main sys	em(s) stem 1	mentary				(203)] =			1	(202) (204)
Fraction of total heat Efficiency of main sp	ing from ace heat	nain syst main sys ing syste	em(s) stem 1 em 1					(203)] =			1	(202) (204) (206)
Fraction of total heat Efficiency of main sp Efficiency of seconda	ing from ace heat ary/supple	nain syst main sys ing syste ementar	em(s) stem 1 em 1 y heating	g system	n, %	(204) = (2	02) × [1 –		Nov	Dec	1 1 93.4 0	(202) (204) (206) (208)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb	ing from ace heat ary/suppl Mar	nain syst main sys ing syste ementar Apr	em(s) stem 1 em 1 y heating May	g system				(203)] = Oct	Nov	Dec	1 1 93.4	(202) (204) (206) (208)
Fraction of total heat Efficiency of main sp Efficiency of seconda	ing from ace heat ary/suppl Mar	nain syst main sys ing syste ementar Apr	em(s) stem 1 em 1 y heating May	g system	n, %	(204) = (2	02) × [1 –		Nov 264.26	Dec 403.19	1 1 93.4 0	(202) (204) (206) (208)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33	ing from ace heat ary/supple Mar ement (c 215.58	nain syst main syst ing syste ementar Apr alculated 101.13	em(s) stem 1 em 1 y heating May d above) 32.73	g system	n, %	(204) = (2 Aug	02) × [1 – Sep	Oct			1 1 93.4 0	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir	ing from ace heat ary/supple Mar ement (c 215.58	nain syst main syst ing syste ementar Apr alculated 101.13	em(s) stem 1 em 1 y heating May d above) 32.73	g system	n, %	(204) = (2 Aug	02) × [1 – Sep	Oct			1 1 93.4 0	(202) (204) (206) (208)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20)	ing from ace heat ary/supple Mar cement (c 215.58 (24)] } x 1	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20	em(s) stem 1 em 1 y heating May d above) 32.73	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 114.03 122.09	264.26 282.93	403.19 431.68	1 1 93.4 0	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20 417.18 305.5	ing from ace heat ary/supple Mar ement (c 215.58 (24)] } x 1 230.81	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20 108.28	em(s) stem 1 em 1 y heating May d above) 32.73 06) 35.04	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 114.03 122.09	264.26 282.93	403.19 431.68	1 93.4 0 kWh/ye	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20)	ing from ace heat ary/supple Mar ement (c 215.58 (24)] } x 1 230.81	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20 108.28	em(s) stem 1 em 1 y heating May d above) 32.73 06) 35.04	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 114.03 122.09	264.26 282.93	403.19 431.68	1 93.4 0 kWh/ye	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20 417.18 305.5]	ing from ace heat ary/supple Mar ement (c 215.58 (24)] } x 1 230.81	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20 108.28	em(s) stem 1 em 1 y heating May d above) 32.73 06) 35.04	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 114.03 122.09	264.26 282.93	403.19 431.68	1 93.4 0 kWh/ye	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20)] 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (20)	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 secondar 100 ÷ (20	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8)	em(s) stem 1 em 1 y heating May d above) 32.73 06) 35.04 month	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 Sep 0 0 I (kWh/yea	Oct 114.03 122.09 ar) =Sum(2 0	264.26 282.93 211) _{15,1012} 0	403.19 431.68 -	1 93.4 0 kWh/ye	(202) (204) (206) (208) ear
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20)] 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (20)	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 secondar 100 ÷ (20	nain syst main syst ing syste ementar Apr alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8)	em(s) stem 1 em 1 y heating May d above) 32.73 06) 35.04 month	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 0 I (kWh/yea	Oct 114.03 122.09 ar) =Sum(2 0	264.26 282.93 211) _{15,1012} 0	403.19 431.68 -	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20)]} (211)m = {[(98)m x (20)]} x (20) (215)m 0 0 Water heating Output from water heat	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 (20) ÷ (20) 0 (0) (20) (20) (20) (20) (20) (20)	nain syst main syst ing syste ementary alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun 0	n, % Jul 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 Sep 0 0 I (kWh/yea I (kWh/yea	Oct 114.03 122.09 ar) = Sum(2 0 ar) = Sum(2	264.26 282.93 211) _{15,1012} 0 215) _{15,1012}	403.19 431.68 = 0	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heat 165.55 144.61	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 (230.81) (20) ÷ (20) (10) ÷ (20) (20) ÷ (20) (150.46)	nain syst main syst ing syste ementar alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun) 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 0 I (kWh/yea	Oct 114.03 122.09 ar) =Sum(2 0	264.26 282.93 211) _{15,1012} 0	403.19 431.68 = 0	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heat 165.55 144.61 Efficiency of water heat	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 (20) ÷ (20) 0 (150.46 ater	nain syst main syst ing syste ementary alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0 ulated al 133.45	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun) 0 0 113.79	n, % Jul 0 0	(204) = (2) Aug 0 Tota 0 Tota 121.54	02) × [1 Sep 0 0 I (kWh/yea 122.88	Oct 114.03 122.09 ar) = Sum(2 0 ar) = Sum(2 139.92	264.26 282.93 211) _{15,1012} 0 215) _{15,1012} 149.36	403.19 431.68 = 0 = 161.66	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211) (215)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20) 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heat 165.55 144.61 Efficiency of water heat (217)m = 87.13 86.73	ing from ace heat ary/supple ement (c 215.58 04)] } x 1 230.81 secondar 00 ÷ (20 0 150.46 ater 85.96	nain syst main syst ing syste ementar alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0 ulated al 133.45 84.36	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun 0	n, % Jul 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 Sep 0 0 I (kWh/yea	Oct 114.03 122.09 ar) = Sum(2 0 ar) = Sum(2	264.26 282.93 211) _{15,1012} 0 215) _{15,1012}	403.19 431.68 = 0	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20) 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heat 165.55 144.61 Efficiency of water heat (217)m = 87.13 86.73 Fuel for water heating	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 (230.81 (200 ÷ (20) 0 (200 ÷ (20) 0 (20) (20) (20) (20) (20) (20) (20	ain syst main syst ing syste ementary alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0 ulated al 133.45 84.36 onth	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun) 0 0 113.79	n, % Jul 0 0	(204) = (2) Aug 0 Tota 0 Tota 121.54	02) × [1 Sep 0 0 I (kWh/yea 122.88	Oct 114.03 122.09 ar) = Sum(2 0 ar) = Sum(2 139.92	264.26 282.93 211) _{15,1012} 0 215) _{15,1012} 149.36	403.19 431.68 = 0 = 161.66	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211) (215)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20) 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heat 165.55 144.61 Efficiency of water heat (217)m = 87.13 86.73	ing from ace heat ary/supple ement (c 215.58 (24)] } x 1 230.81 (230.81 (200 ÷ (20) 0 (200 ÷ (20) 0 (20) (20) (20) (20) (20) (20) (20	ain syst main syst ing syste ementary alculated 101.13 00 ÷ (20 108.28 y), kWh/ 8) 0 ulated al 133.45 84.36 onth	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0	g system Jun) 0 0 113.79	n, % Jul 0 0	(204) = (2) Aug 0 Tota 0 Tota 121.54	02) × [1 Sep 0 0 I (kWh/yea 122.88	Oct 114.03 122.09 ar) = Sum(2 0 ar) = Sum(2 139.92	264.26 282.93 211) _{15,1012} 0 215) _{15,1012} 149.36	403.19 431.68 = 0 = 161.66	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211) (215)
Fraction of total heat Efficiency of main sp Efficiency of seconda Jan Feb Space heating requir 389.65 285.33 (211)m = {[(98)m x (20 417.18 305.5 Space heating fuel (s = {[(98)m x (201)] } x (215)m = 0 0 Water heating Output from water heating Output from water heating (217)m 87.13 86.73 Fuel for water heating (219)m = (64)m x 10	ing from ace heat ary/supple ement (c 215.58 (24)] $\}$ x 1 230.81 (230.81) (20) \div (20) (20) \div (20) (20) \div (20) (20) \div (20) (20) \div (217) (20) \div (217) (217) \div (217)	nain systematic main systematic ing systematic ementary Apr alculated 101.13 00 ÷ (20 108.28 y), kWh/ 0 8) 0 ulated al 133.45 84.36 onth m	em(s) stem 1 em 1 y heating d above) 32.73 06) 35.04 month 0 129.2 82.16	g system Jun) 0 0 113.79 80.3	n, % Jul 0 0 109.02 80.3	(204) = (2) Aug 0 Tota 0 Tota 121.54 80.3	02) × [1 Sep 0 0 1 (kWh/yea 122.88 80.3	Oct 114.03 122.09 ar) =Sum(2 0 139.92 84.54 165.51	264.26 282.93 211) _{15,1012} 0 215) _{15,1012} 149.36 86.47	403.19 431.68 = 0 = 161.66 87.26	1 93.4 0 KWh/ye	(202) (204) (206) (208) (208) (211) (211) (211) (215)

Annual totals		kWh/year	г	kWh/year	1
Space heating fuel used, main system 1			L	1933.5	
Water heating fuel used				1952.58	
Electricity for pumps, fans and electric keep-hot					
central heating pump:		[30		(230c)
boiler with a fan-assisted flue		[45		(230e)
Total electricity for the above, kWh/year	sum of (230a)	(230g) =	[75	(231)
Electricity for lighting				238.76	(232)
12a. CO2 emissions – Individual heating systems	including micro-CHP				
	Energy kWh/year	Emission fact kg CO2/kWh	or	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	417.64	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	421.76	(264)
Space and water heating	(261) + (262) + (263) + (264) =		[839.39	(265)
Elec <mark>tricity for pumps, fans and</mark> electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	- [123.92	(268)
Total CO2, kg/year	sum o	of (265)…(271) =		1002.23	(272)
TER =			L	19.39	(273)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa Address:	re Ver			Versio	on: 1.0.4.23	
Address :	2 Bed Flat, 219-223					ah Junct	tion. LON	NDON		
1. Overall dwelling dime				,		,	,			
Ground floor				a(m²) 77.9	(1a) x		ight(m) 2.5	(2a) =	Volume(m³ 194.75) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e	e)+(1n)) 7	7.9	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3c	d)+(3e)+	.(3n) =	194.75	(5)
2. Ventilation rate:										
Number of chimneys	main so heating h	econdary leating	/] + [_	other 0] = [total 0	X 4	40 =	m ³ per hou	r (6a)
Number of open flues	0 +	0] + [0] = [0	x	20 =	0	(6b)
Number of intermittent fa	ns		J L_		, г Г	3	x /	10 =	30	(7a)
Number of passive vents					Γ	0	x ′	10 =	0	(7b)
Number of flueless gas fi	res				Ē	0	X 4	40 =	0	(7c)
								Air ch	anges per ho	our
Infiltration due to chimney						30		÷ (5) =	0.15	(8)
Number of storeys in the Additional infiltration		u, proceeu	<i>io (17),</i> c		onunue m	0111 (9) to (-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.					•	uction			0	(11)
deducting areas of openir	resent, use the value corres ngs); if equal user 0.35	ponding to	ine greate	er wall area	a (aner					
If suspended wooden f	loor, enter 0.2 (unseal	ed) or 0. ⁻	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, en	ter 0.05, else enter 0								0	(13)
Percentage of windows	s and doors draught st	ripped							0	(14)
Window infiltration				0.25 - [0.2					0	(15)
Infiltration rate				(8) + (10) -		· · · ·			0	(16)
Air permeability value,	•		•	•		etre of e	envelope	area	5	(17)
If based on air permeabil Air permeability value applie						ia haina u	and		0.4	(18)
Number of sides sheltere		s been done	e or a deg	liee all pei	meaning	is being u	seu		2	(19)
Shelter factor	4			(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporat	ing shelter factor			(21) = (18)	x (20) =				0.34	(21)
Infiltration rate modified for	or monthly wind speed	ł								
Jan Feb	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	2)m ÷ 4									
(22a)m= 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
	0.44	0.43	0.42	0.38	0.37	0.33	0.33	0.32	0.34	0.37	0.39	0.4		
	ate etteo echanica		•	rate for t	he applic	cable ca	se						0	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (I	N5)) , othe	rwise (23b) = (23a)			0	(23b)
If bala	anced with	heat reco	overy: effic	ciency in %	allowing for	or in-use fa	actor (fron	n Table 4h) =				0	(23c)
a) If	balance	d mech	anical ve	entilation	with hea	at recove	əry (MVI	HR) (24a	a)m = (22	2b)m + (23b) × [*	1 – (23c)	-	()
(24a)m=		0	0	0	0	0	0	0	0	0	0	0		(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	covery (N	u MV) (24t)m = (22	2b)m + (2	23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	ouse ex	tract ver	ntilation c	or positiv	e input v	ventilatio	n from o	outside			!		
i	if (22b)n	n < 0.5 >	< (23b), t	then (24c	c) = (23b); otherv	wise (24	c) = (22	o) m + 0.	5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous	•	•				0.51				
(24d)m=	· ,	n = 1, tn 0.59	en (24d) 0.59	m = (22k)	0.57	1WISE (2	40)m =	0.5 + [(2	2D)m ² X	0.5]	0.57	0.58	l	(24d)
										0.57	0.57	0.56		(240)
(25)m=		0.59	0.59	nter (24a)	0.57	0.55	0.55		0.56	0.57	0.57	0.58		(25)
(23)11-	0.0	0.33	0.55	0.37	0.01	0.55	0.00	0.00	0.50	0.57	0.57	0.00		(20)
3. He	at losse	s and he	eat loss	paramete										
ELEN		Gro: area		Openin	-	Net Ar		U-val W/m2		A X U (W/I	()	k-value		A X k kJ/K
Windo	ws Type		()			9.45		/[1/(1.4)+		12.53				(27)
	ws Type					3.15	=	/[1/(1.4)+		4.18	Ħ			(27)
Walls ⁻		10.0	15	9.45		0.6		0.18		0.11	Fi r			(29)
Walls -		14.		0.10	=	14.5		0.18		2.61	╘┤┟		= -	(29)
Walls ⁻		5.3		3.15		2.2		0.18		0.4	╡╏		\dashv	(29)
	rea of e			0.10		29.9		0.10		0.4	L			(20)
Party v			,			32	x	0	= [0	r			(32)
Party v						32				0	╡╏		\dashv	(32)
Party f						77.9		0		0	L r		\dashv	(32a)
Party c						77.9					L		\dashv	(32a) (32b)
-	al wall **					82.5					L		\dashv	(32b) (32c)
			lows. use e	effective wil	ndow U-va			a formula 1	/[(1/U-valu	ıe)+0.041 a	L Is aiven in	paragraph	L	(020)
				nternal wall				,		,,.	- J	p 9 p		
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30) + (32) =				19.8	32 (33)
Heat c	apacity	Cm = S	(A x k)						((28)	.(30) + (32	2) + (32a).	(32e) =	15893	3.1 (34)
Therm	al mass	parame	eter (TMI	P = Cm ÷	- TFA) in	⊨kJ/m²K			Indica	tive Value	Medium		250) (35)
	-		nere the de tailed calc	etails of the rulation.	constructi	on are not	t known pi	recisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridge	es : S (L	. x Y) cal	lculated u	using Ap	pendix ł	<						4.64	4 (36)
			are not kr	nown (36) =	= 0.05 x (3	1)								
I otal fa	abric he	at loss							(33) +	(36) =			24.4	6 (37)

Ventila	ation hea	t loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	38.3	38.06	37.82	36.72	36.51	35.55	35.55	35.38	35.92	36.51	36.93	37.37		(38)
Heat t	ransfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	62.75	62.51	62.28	61.17	60.97	60.01	60.01	59.83	60.38	60.97	61.39	61.82		_
				/2021						-	Sum(39) _{1.}	12 /12=	61.17	(39)
(40)m=	oss para	0.8	1LP), VV	0.79	0.78	0.77	0.77	0.77	0.78	= (39)m ÷ 0.78	0.79	0.79		
(40)11-	0.01	0.0	0.0	0.75	0.70	0.11	0.77	0.11			Sum(40)1.		0.79	(40)
Numb	er of day	rs in moi	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater heat	ing enei	rgy requ	irement:								kWh/ye	ear:	
Assun	ned occu	ipancy	N								2	42		(42)
if TF	A > 13.9	9, N = 1		: [1 - exp	(-0.0003	849 x (TF	A -13.9)2)] + 0.0	0013 x (⁻	TFA -13.		42		()
	A £ 13.9	,	tor upo	ao in litre	o por de	w Vd ov	orogo –	(25 v NI)	1.26]		(10)
Reduce	the annua	l average	hot water	usage by	5% if the a	lwelling is	designed i	(25 x N) to achieve	+ 30 a water us	se target o	f 91	.72		(43)
not mor	e that 125	litres per	person pe	r day (all w	vater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage ii	n litres per	day for e	ach month	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	100.89	97.22	93.55	89.88	86.21	82.55	82.55	86.21	89.88	93.55	97.22	100.89		-
Energy	content of	hot water	used - ca	culated m	onthly $= 4$.	190 x Vd,r	n x nm x E	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1	L	1100.62	(44)
(45)m=	149.62	130.86	135.03	117.72	112.96	97.47	90.32	103.65	104.89	122.24	133.43	144.9		
										Total = Su	m(45) ₁₁₂ =		1443.08	(45)
			<u> </u>	· · ·				boxes (46)		r	i			
	22.44 storage		20.25	17.66	16.94	14.62	13.55	15.55	15.73	18.34	20.01	21.73		(46)
	-		includir	ng any se	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If com	munity h	eating a	ind no ta	ank in dw	velling, e	nter 110	litres in	(47)						
			hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
	storage		مامتمطا	a a a fa at	an ia kwa		(dev)							(10)
,				oss facto	or is kno	wn (kvvr	1/day):					0		(48)
	erature fa			⊧ ∠b e, kWh/ye	oor			(48) x (49)	_			0		(49)
-			-	cylinder		or is not		(40) × (43)	-			0		(50)
		-		rom Tab	le 2 (kW	h/litre/da	ıy)					0		(51)
	munity h	-		on 4.3										()
	e factor erature fa			2h								0 0		(52) (53)
					aar			(47) x (51)	v (52) v (53) -				
-	(50) or (-	e, kWh/ye	Jai			(10) X (01)	, (JZ) X (55) =		0 0		(54) (55)
				for each	month			((56)m = (55) × (41)ı	m	L'	~		()
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
· · · · · ·	-	-	-	-	-	- -	-	-	-	-	-	-		

If cylinder conta	ins dedicate	ed solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circu	uit loss (ar	nnual) fro	om Table	e 3					-		0		(58)
Primary circu					59)m = ((58) ÷ 36	65 × (41)	m					
(modified	by factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)		L	
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0	_	(59)
Combi loss o	alculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 50.96	6 44.75	47.67	44.33	43.93	40.71	42.06	43.93	44.33	47.67	47.94	50.96		(61)
Total heat re	quired for	water he	eating ca	alculated	l for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	1
(62)m= 200.5	8 175.6	182.7	162.05	156.89	138.18	132.39	147.58	149.21	169.91	181.37	195.85		(62)
Solar DHW inpu	it calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	al lines if	FGHRS	and/or V	WHRS	applies	, see Ap	pendix C	G)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ater											
(64)m= 200.5	8 175.6	182.7	162.05	156.89	138.18	132.39	147.58	149.21	169.91	181.37	195.85		-
							Outp	out from w	ater heate	r (annual)₁	12	1992.33	(64)
Heat gains fi	om water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 62.49	54.7	56.82	50.22	48.54	42.59	40.55	45.45	45.96	52.56	56.35	60.92		(65)
in <mark>clude</mark> (57	7)m in c <mark>al</mark>	culation of	of (65)m	only if c	ylinder is	s in th <mark>e</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal	gains (see	e Table 5	and 5a):									
Met <mark>abolic</mark> ga		e 5), Wat	ts								i		
Jan		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 121.0		121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09		(66)
Lighting gair		· · · ·	·	· ·		, ·		1	i	i	·	I	
(67)m= 19.95	17.72	14.41	10.91	8.16	6.89	7.44	9.67	12.98	16.48	19.24	20.51		(67)
Appliances g				-				see Ta	ble 5	1		I	
	217.23							164.23	176.2	191.31	205.51		(68)
Cooking gair	`	· · · · ·		· ·		, <u> </u>	1	e Table	· · · · ·		r	I	
(69)m= 35.11		35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11		(69)
Pumps and f	ans gains	(Table 5	ōa)									1	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g.		on (nega	tive valu	es) (Tab	ole 5)								
(71)m= -96.8 [°]	7 -96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87		(71)
Water heatin	<u> </u>	Table 5)						r				I	
(72)m= 83.99	81.39	76.37	69.76	65.24	59.15	54.5	61.08	63.83	70.65	78.27	81.88		(72)
Total intern		=			(66)		n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m	1	
(73)m= 381.2		364.71	342.63	320.26	298.69	285.11	291.69	303.37	325.66	351.14	370.22		(73)
6. Solar gai				T-bl 0		·				1			
Solar gains an		•					itions to co		ie applicat		ion.	Coinc	
Orientation:	Access I Table 6c		Area m²		Flu Tal	x ble 6a	Т	g_ able 6b	T	FF able 6c		Gains (W)	

_														
Northeast 0.9x	0.77	x	3.1	5	x	11.28	x	0	.63	x	0.7	=	10.86	(75)
Northeast 0.9x	0.77	x	3.1	5	x	22.97	x	0	.63	×	0.7	=	22.11	(75)
Northeast 0.9x	0.77	x	3.1	5	x	41.38	x	0	.63	x	0.7	=	39.83	(75)
Northeast 0.9x	0.77	x	3.1	5	x	67.96	x	0	.63	×	0.7	=	65.42	(75)
Northeast 0.9x	0.77	x	3.1	5	x	91.35	x	0	.63	×	0.7	=	87.94	(75)
Northeast 0.9x	0.77	x	3.1	5	x	97.38	×	0	.63	×	0.7	=	93.75	(75)
Northeast 0.9x	0.77	x	3.1	5	×	91.1	۲ × آ	0	.63		0.7	=	87.7	(75)
Northeast 0.9x	0.77	x	3.1	5	×	72.63	- x	0	.63		0.7	=	69.92	(75)
Northeast 0.9x	0.77	x	3.1	5	x	50.42	X	0	.63	×	0.7	=	48.54	(75)
Northeast 0.9x	0.77	x	3.1	5	×	28.07	۲ × آ	0	.63		0.7	=	27.02	(75)
Northeast 0.9x	0.77	x	3.1	5	×	14.2	۲ × آ	0	.63		0.7	=	13.67	(75)
Northeast 0.9x	0.77	x	3.1	5	×	9.21	ے x آ	0	.63		0.7	=	8.87	(75)
Southwest _{0.9x}	0.77	x	9.4	5	×	36.79	Ī	0	.63		0.7	=	106.26	(79)
Southwest _{0.9x}	0.77	x	9.4	5	×Г	62.67	Ī	0	.63		0.7	=	181	(79)
Southwest _{0.9x}	0.77	x	9.4	5	×	85.75	Ī	0	.63		0.7	=	247.66	(79)
Southwest _{0.9x}	0.77	x	9.4	5	×	106.25	Ī	0	.63		0.7	=	306.86	(79)
Southwest _{0.9x}	0.77	x	9.4	5	×Г	119.01	Ī	0	.63		0.7	=	343.71	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	x	9.4	5	×Г	118.15	1	0	.63	x	0.7	=	341.22	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9.4	5	x	113.91	1	0	.63	x	0.7	-	328.97	(79)
Sout <mark>hwest</mark> 0.9x	0.77	×	9.4	5	x	104.39	ī /	0	.63	x	0.7	=	301.48	(79)
Sout <mark>hwest</mark> 0.9x	0.77	×	9.4	5	×Г	92.85	ī/	0	.63	×	0.7	=	268.16	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9.4	5	×Г	69.27	ī –	0	.63	×	0.7	=	200.05	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9.4	5	x	44.07	-		.63	×	0.7	=	127.28	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	×	9.4	5	x	31.49	Ī	0	.63	×	0.7	=	90.94	(79)
								<u> </u>						
Solar gains in	watts, ca	lculated	for each	n month			(83)r	n = Sum	(74)m	(82)m				
(83)m= 117.12	203.11	287.49	372.28	431.64	434	.97 416.68	37	1.4 3	316.7	227.07	7 140.94	99.81]	(83)
Total gains –	internal a	nd solar	(84)m =	: (73)m	+ (83	s)m, watts								
(84)m= 498.39	581.78	652.2	714.91	751.9	733	.66 701.79	663	3.09 6	20.07	552.73	492.09	470.03		(84)
7. Mean inte	rnal temp	erature	(heating	season)									
Temperature	during h	eating p	eriods ir	the livi	ng ar	ea from Ta	able S), Th1 (°C)				21	(85)
Utilisation fac	ctor for ga	ains for I	iving are	a, h1,m	(see	e Table 9a)								
Jan	Feb	Mar	Apr	May	Ju	ın Jul	A	lug	Sep	Oct	Nov	Dec		
(86)m= 1	0.99	0.97	0.89	0.72	0.5	62 0.38	0.	41	0.66	0.93	0.99	1	1	(86)
Mean interna	al tempera	ature in	living are	ea T1 (fo	Sllow	steps 3 to	7 in ⁻	Table 9					-	
(87)m= 20.29	20.45	20.65	20.86	20.97	2		-		20.99	20.84	20.53	20.27]	(87)
Temperature		eating n	ariode in	rest of	dwal	ling from T	- ahla	0 Th2	(°C)				1	
(88)m= 20.25	20.25	20.25	20.27	20.27	20.		-		20.27	20.27	20.26	20.26]	(88)
													1	
Utilisation factors (89)m= 1	0.99	0.96	0.86	velling, 0.68	n2,m	<u> </u>	т ́	35	0.59	0.9	0.99	1	1	(89)
	1 1				I		_				0.33	L]	(00)
Mean interna	al tempera	ature in t	ina rast i	nt dwell	ina T	2 (tollow st	anc (≺to 7in	n Lablı	a Url				

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

						i	r							(00)
(90)m=	19.3	19.52	19.82	20.12	20.24	20.28	20.28	20.28	20.27	20.09	19.65	19.27		(90)
									I	LA = LIVIN	g area ÷ (4	+) =	0.37	(91)
Mean	internal	temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	A) × T2					
(92)m=	19.66	19.86	20.12	20.39	20.51	20.54	20.54	20.55	20.53	20.37	19.98	19.64		(92)
Apply	adjustr	nent to t	he mean	interna	temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	19.66	19.86	20.12	20.39	20.51	20.54	20.54	20.55	20.53	20.37	19.98	19.64		(93)
8. Sp	ace heat	ting requ	uirement											
	i to the r tilisation			•		ed at ste	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac				may	Udit	001	, lug	000	000	1101	200		
(94)m=	0.99	0.98	0.96	0.87	0.69	0.48	0.34	0.37	0.62	0.9	0.99	1		(94)
	ul gains,	hmGm .	. W = (94	1)m x (84	1 4)m			I						
(95)m=	495.57	572.72	623.18	619.01	, 521.08	355.45	236.63	247.89	382.7	499.57	484.77	468.14		(95)
Mont	hly avera	age exte	rnal tem	perature	e from Ta	able 8	ļ							
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	for mea	an intern	al tempe	erature,	Lm , W =	- =[(39)m :	r [(93)m	– (96)m]				
(97)m=	964.07	935.39	848.39	702.96	537.2	356.62	236.71	248.04	388.4	595.63	790.4	954.28		(97)
Space	e heating	g require	ement fo	r each n	honth, k	Nh/mon	th = 0.02	2 <mark>4 x [(9</mark> 7)m – (95)m] x (4 ⁻	1)m			
(98)m=	348.57	243.71	167.56	60.44	12	0	0	0	0	71.47	220.06	361.69		
								Tota	per year	(kWh/year) = Sum(9	8)15,912 =	1 <mark>4</mark> 85.49	(98)
Space	e heating	g requ <mark>ire</mark>	ement in	kWh/m ²	vear								10.07	(99)
					, ,								19.07	(33)
9a. En	erav rea	uiremer				vstems i	ncluding	micro-C	CHP)				19.07	
	ergy req e heatin					ystems i	ncluding	micro-C	HP)	-			19.07	
Sp <mark>ac</mark>	ergy req e heatin ion of sp	ig:	nts – Indi	vidual h	eating s				CHP)	1			0	(201)
Spac Fracti	e heatin	i g: ace hea	nts Indi at from se	ividual h econdar	eating sy y/supple		system							
Spac Fracti Fracti	e heatin ion of sp	i g: ace hea ace hea	nts Indi at from so at from m	vidual h econdar nain syst	eating s y/supple em(s)		system	(202) = 1 ·		(203)] =			0	(201)
Spac Fracti Fracti Fracti	e heatin ion of sp ion of sp	i g: ace hea ace hea al heatin	nts Indi at from so at from m ng from n	ividual h econdar nain syst main sys	eating sy y/supple em(s) stem 1		system	(202) = 1 ·	- (201) =	(203)] =			0	(201)
Spac Fracti Fracti Fracti Efficie	e heatin ion of sp ion of sp ion of tot	n g: ace hea ace hea cal heatin nain spa	nts – Indi at from so at from m ng from n ace heat	vidual h econdary nain syst main syste	eating sy y/supple em(s) stem 1 em 1	mentary	system	(202) = 1 ·	- (201) =	(203)] =			0	(201) (202) (204)
Spac Fracti Fracti Fracti Efficie	e heatin ion of sp ion of tot ency of r ency of s	ace hea ace hea al heatin nain spa seconda	nts Indi at from so at from m ng from n ace heati ry/supple	vidual h econdary nain syst main syst ing syste ementar	eating s y/supple em(s) stem 1 em 1 y heating	mentary g system	system	(202) = 1 · (204) = (2	- (201) = 02) × [1 -		Nov	[0 1 1 93.4 0	(201) (202) (204) (206) (208)
Spac Fracti Fracti Efficie Efficie	e heatin ion of sp ion of tot ency of r ency of s	ng: ace hea ace hea al heatin nain spa seconda Feb	nts – Indi at from so at from m ng from n ace heati ry/supple Mar	vidual h econdar nain syst main syst ing syste ementar Apr	eating sy y/supple em(s) stem 1 em 1 y heating May	mentary g system Jun	system	(202) = 1 ·	- (201) =	(203)] = Oct	Nov	Dec	0 1 1 93.4	(201) (202) (204) (206) (208)
Spac Fracti Fracti Efficie Efficie	e heatin ion of sp ion of tot ency of r ency of s	ng: ace hea ace hea al heatin nain spa seconda Feb	nts – Indi at from so at from m ng from n ace heati ry/supple Mar	vidual h econdar nain syst main syst ing syste ementar Apr	eating sy y/supple em(s) stem 1 em 1 y heating May	mentary g system Jun	system	(202) = 1 · (204) = (2	- (201) = 02) × [1 -		Nov 220.06	Dec 361.69	0 1 1 93.4 0	(201) (202) (204) (206) (208)
Spac Fracti Fracti Efficie Space	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57	eg: ace hea ace hea al heatin nain spa seconda Feb g require 243.71	nts Indi at from so at from m ng from n ace heati ry/supple Mar ement (c 167.56	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44	eating s y/supple em(s) stem 1 em 1 y heating May d above	mentary g system Jun	system	(202) = 1 · (204) = (2 Aug	- (201) = 02) × [1 - Sep	Oct			0 1 1 93.4 0	(201) (202) (204) (206) (208) ar
Spac Fracti Fracti Efficie Space	e heatin ion of sp ion of tot ency of r ency of s Jan 348.57 $n = \{[(98)]$	ng: ace hea ace hea al heatin nain spa seconda Feb g require 243.71	nts Indi at from so at from m ng from m ace heati ry/supple Mar Mar ement (c 167.56	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20	eating s y/supple em(s) stem 1 em 1 y heating May d above 12	mentary g system Jun) 0	system	(202) = 1 · (204) = (2 Aug	- (201) = 02) × [1 - Sep 0	Oct 71.47	220.06		0 1 1 93.4 0	(201) (202) (204) (206) (208)
Spac Fracti Fracti Efficie Space	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57	eg: ace hea ace hea al heatin nain spa seconda Feb g require 243.71	nts Indi at from so at from m ng from n ace heati ry/supple Mar ement (c 167.56	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44	eating s y/supple em(s) stem 1 em 1 y heating May d above	mentary g system Jun	system	$(202) = 1 \cdot (204) = (2)$ Aug	- (201) = 02) × [1 - <u>Sep</u> 0	Oct 71.47 76.52	220.06 235.61	361.69 387.25	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar
Spac Fracti Fracti Efficie Space (211)m	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2	ng: ace hea ace hea al heatin nain spa seconda Feb g require 243.71 m x (20 260.93	nts – Indi at from s at from m ng from n ace heati ry/supple Mar ement (c 167.56 (4)] } x 1 179.4	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84	mentary g system Jun) 0	system	$(202) = 1 \cdot (204) = (2)$ Aug	- (201) = 02) × [1 - Sep 0	Oct 71.47 76.52	220.06 235.61	361.69 387.25	0 1 1 93.4 0	(201) (202) (204) (206) (208) ar
Space Fracti Fracti Efficie Space (211)m	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating	ng: ace hea ace hea cal heatin nain spa seconda Feb g require 243.71 m x (20 260.93	nts Indi at from s at from m ng from m ace heati ry/supple Mar ement (c 167.56 (4)] } x 1 179.4	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84	mentary g system Jun) 0	system	$(202) = 1 \cdot (204) = (2)$ Aug	- (201) = 02) × [1 - <u>Sep</u> 0	Oct 71.47 76.52	220.06 235.61	361.69 387.25	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar
Space Fracti Fracti Efficie Space (211)m Space = {[(98	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20)	ng: ace hea ace hea cal heatin nain spa seconda Feb g require 243.71 m x (20 260.93	nts Indi at from s at from m ng from m ace heati ry/supple Mar ement (c 167.56 (4)] } x 1 179.4	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84	mentary g system Jun) 0	system	$(202) = 1 \cdot (204) = (2)$ Aug	- (201) = 02) × [1 - <u>Sep</u> 0	Oct 71.47 76.52	220.06 235.61	361.69 387.25	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar
Space Fracti Fracti Efficie Space (211)m	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20)	ace hea ace hea al heatin nain spa seconda Feb g require 243.71 m x (20 260.93 g fuel (s 1)] } x 1	hts Indi at from so at from m ng from m ace heati ry/supple Mar Mar $ment (c167.56(4)] } x 1179.4econdar00 ÷ (20)$	vidual h econdary nain syst main syst ing syste ementar Apr alculated 60.44 00 ÷ (20 64.71 y), kWh/ 8)	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84 month	g system	system	(202) = 1 + (204) = (2) Aug 0 Tota	- (201) = 02) × [1 - 0 0 1 (kWh/yea	Oct 71.47 76.52 ar) =Sum(2	220.06 235.61 211) _{15,1012} 0	361.69 387.25 = 0	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar (211)
Spac Fracti Fracti Efficie Space (211)m Space = {[(98 (215)m=	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20	$\begin{array}{c} \mathbf{g:} \\ \mathbf{ace hea} \\ a$	hts Indi at from so at from m ng from m ace heati ry/supple Mar Mar $ment (c167.56(4)] } x 1179.4econdar00 ÷ (20)$	vidual h econdary nain syst main syst ing syste ementar Apr alculated 60.44 00 ÷ (20 64.71 y), kWh/ 8)	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84 month	g system	system	(202) = 1 + (204) = (2) Aug 0 Tota	- (201) = 02) × [1 - Sep 0 1 (kWh/yea	Oct 71.47 76.52 ar) =Sum(2	220.06 235.61 211) _{15,1012} 0	361.69 387.25 = 0	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar
Spac Fracti Fracti Efficie Space (211)m Space = {[(98 (215)m=	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20 n = 100 m x (20)	$\begin{array}{c} \mathbf{g:} \\ \mathbf{ace hea} \\ a$	hts Indi at from so at from m ace heati ry/supple Mar $ment (c167.56(4)] } x 1(179.4)econdary00 \div (20)$	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71 y), kWh/ 8) 0	eating s y/supple em(s) stem 1 em 1 y heating May d above 12 06) 12.84 month 0	g system	system	(202) = 1 + (204) = (2) Aug 0 Tota	- (201) = 02) × [1 - 0 0 1 (kWh/yea	Oct 71.47 76.52 ar) =Sum(2	220.06 235.61 211) _{15,1012} 0	361.69 387.25 = 0	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar (211)
Spac Fracti Fracti Efficie Space (211)m Space = {[(98 (215)m=	e heatin ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20	$\begin{array}{c} \mathbf{g:} \\ \mathbf{ace hea} \\ a$	hts Indi at from so at from m ace heati ry/supple Mar $ment (c167.56(4)] } x 1(179.4)econdary00 \div (20)$	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71 y), kWh/ 8) 0	eating s y/supple em(s) stem 1 em 1 y heating May d above 12 06) 12.84 month 0	g system	system	(202) = 1 + (204) = (2) Aug 0 Tota	- (201) = 02) × [1 - 0 0 1 (kWh/yea	Oct 71.47 76.52 ar) =Sum(2	220.06 235.61 211) _{15,1012} 0	361.69 387.25 = 0	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar (211)
Spac Fracti Fracti Efficie Space (211)m Space = {[(98 (215)m= Water Output	e heating ion of sp ion of tot ency of r ency of s Jan e heating 348.57 n = {[(98) 373.2 e heating)m x (20)m x (20 heating t from wa	ace heat ace heat ace heat al heat anain spat seconda Feb 243.71 m x (20) 260.93 $g fuel (so1)] \} x 10ater heat175.6$	hts Indi at from s at from m ng from m ace heati ry/supple Mar ment (c167.56) (179.4) (179.4) (179.4) (20	vidual h econdary nain syst main syst ing syste ementar Apr alculate 60.44 00 ÷ (20 64.71 y), kWh/ 8) 0	eating s y/supple em(s) stem 1 em 1 y heating d above 12 06) 12.84 month 0	mentary g system Jun) 0	system	(202) = 1 · (204) = (2 Aug 0 Tota 0 Tota	- (201) = 02) × [1 - 0 0 I (kWh/yea 0 I (kWh/yea	Oct 71.47 76.52 ar) = Sum(2) 0 ar) = Sum(2)	220.06 235.61 211) _{15,1012} 0 215) _{15,1012}	361.69 387.25 = 0	0 1 1 93.4 0 kWh/ye	(201) (202) (204) (206) (208) ar (211)

(217)m= 86.43 85.88 84.83 82.81 80.94	80.3 80.3	80.3	80.3	83.05	85.54	86.57		(217)
Fuel for water heating, kWh/month								
$(219)m = (64)m \times 100 \div (217)m$ $(219)m = 232.07 204.48 215.37 195.68 193.83 1^{\circ}$	72.08 164.87	183.79	185.82	204.59	212.04	226.23		
		Total	l = Sum(2	19a) ₁₁₂ =		I	2390.85	(219)
Annual totals				k١	Nh/year	. l	kWh/year	
Space heating fuel used, main system 1							1590.46]
Water heating fuel used						[2390.85	Ī
Electricity for pumps, fans and electric keep-hot						L		
								(000-)
central heating pump:						30		(230c)
boiler with a fan-assisted flue						45		(230e)
Total electricity for the above, kWh/year		sum	of (230a).	(230g) =			75	(231)
Electricity for lighting							352.4	(232)
12a. CO2 emissions – Individual heating system	s including mi	cro-CHP)					
	Energy			Fmiss	ion fac	tor	Emissions	
	kWh/year			kg CO2			kg CO2/yea	ar
Space heating (main system 1)	(211) x			0.21	16	=	343.54	(261)
	(015)			0.5			0	(263)
Space heating (secondary)	(215) x			0.5	9	=	0	(====)
Water heating	(215) x (219) x			0.2		= [516.42](264)
Water heating		+ (263) + (2	264) =			l	516.42	(264)
Water heating Space and water heating	(219) x (261) + (262) ·	+ (263) + (:	264) =	0.21	16	= [[516.42 859.96	(264) (265)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot	(219) x (261) + (262) · (231) x	+ (263) + (:	264) =	0.2	9	= [= [516.42 859.96 38.93	(264) (265) (267)
Water heating Space and water heating	(219) x (261) + (262) ·	+ (263) + (:		0.2	9	= [[516.42 859.96	(264) (265)
Water heating Space and water heating Electricity for pumps, fans and electric keep-hot	(219) x (261) + (262) · (231) x	+ (263) + (2		0.2	9	= [= [516.42 859.96 38.93	(264) (265) (267)

TER =

13.89 (273)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 20			Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
Address :	1 Bed Flat, 219-22			Address:		ah lunct	tion I ON			
1. Overall dwelling dime		5 Columan		ne, Loug	μηροιοαί	gri Junci				
Ground floor				a(m²) 19.8	(1a) x		ight(m) 2.5	(2a) =	Volume(m 124.5	3) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1	e)+(1n)) 4	19.8	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3c	l)+(3e)+	.(3n) =	124.5	(5)
2. Ventilation rate:										
Number of chimneys Number of open flues	main s heating 0 + [0 + [secondary heating 0 0	/] + [_] + [_	0 0] = [] = [total 0 0		40 = 20 =	0 0	ur (6a) (6b)
Number of intermittent fa		•		0		-	,	10 =	-	
	-				Ļ	2		l	20	(7a)
Number of passive vents					L	0		0 =	0	(7b)
Number of flueless gas fi					L	0	X 4	⁴⁰ = Air ch	0 anges per he	(7c)
Infiltration due to chimne						20		÷ (5) =	0.16	(8)
If a pressurisation test has b Number of storeys in th Additional infiltration Structural infiltration: 0. if both types of wall are pri deducting areas of openir	ne dwelling (ns) .25 for steel or timber resent, use the value corre	r frame or	0.35 for	masonr	y constr			-1]x0.1 =	0 0 0	(9) (10) (11)
If suspended wooden f	• / /	aled) or 0.4	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, en		,	,	,.					0	(13)
Percentage of windows	s and doors draught	stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00		İ	0	(15)
Infiltration rate				(8) + (10) ·	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,	• •		•		•	etre of e	envelope	area	5	(17)
If based on air permeabil									0.41	(18)
Air permeability value applie Number of sides sheltere		as been done	e or a deg	ree air pei	meability	is being u	sed	I		(19)
Shelter factor	u			(20) = 1 - [0.075 x (1	9)] =			3 0.78	(19)
Infiltration rate incorporat	ing shelter factor			(21) = (18)	x (20) =			l	0.32	(21)
Infiltration rate modified for	-	ed						I	0.02	
Jan Feb	Mar Apr May		Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	2)m ÷ 4									
	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m	-	-			
~ ' '	0.41	0.4	0.39	0.35	0.34	0.3	0.3	0.29	0.32	0.34	0.36	0.37		
	<i>ate effec</i> echanica		-	rate for t	he appli	cable ca	se							(23a)
	aust air he			endix N, (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) , othei	wise (23b) = (23a)			0	(23a) (23b)
	anced with	• •	0 11		, (, (• •	,, .	,	, , ,			0	(23c)
a) If	balance	d mecha	anical ve	entilation	with he	at recove	erv (MVI	HR) (24a	m = (22)	2b)m + (23b) × [′	1 – (23c)	-	()
(24a)m=	r	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	overy (N	и V) (24b)m = (22	2b)m + (2	23b)	<u> </u>	1	
, (24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole ho	ouse ex	tract ver	ntilation of	or positiv	ve input v	ventilatio	on from c	outside	!	!		1	
,	if (22b)m				•	•				5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,	natural v if (22b)m									0.5]			-	
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0 <mark>.56</mark>	0.56	0.57		(25)
3 He	at losses	and he	at loss i	naramete	ər:									
ELEN		Gros		Openin		Net Ar	ea	U-valı	le	AXU		k-value		AXk
		area		m		A ,r		W/m2		(W/I	K)	kJ/m ² ·l		kJ/K
Windo	ws Type	1				10.13	x1	/[1/(1.4)+	0.04] =	13.43				(27)
Windo	ws Type	2				2.32	x1	/[1/(1.4)+	0.04] =	3.08				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.13	3	9.37	x	0.18] = [1.69				(29)
Walls ⁻	Type2	3.5		2.32		1.18	x	0.18	= [0.21	٦ ī		┓ ┏	(29)
Total a	rea of el	ements	, m²			23								(31)
Party v	vall					51.75	5 x	0	=	0				(32)
Party f	loor					49.8			'		L		\dashv	(32a)
Party of	ceiling					49.8					Γ		\exists	(32b)
Interna	al wall **					45.6					Г		\dashv	(32c)
	dows and						ated using	formula 1	/[(1/U-valu	ie)+0.04] a	L as given in	paragraph		
	le the area heat los				s and par	titions		(26)(30)	+ (32) -					
	apacity (0)				(20)(00)		(30) + (32	2) + (225)	(220) -	18.4	(33)
	apacity (al mass			2 – Cm ·	TEA) ir	k l/m2k				tive Value	· · · ·	(320) =	13281.	
	ign assessi		•					ecisely the				ahle 1f	250	(35)
	used instea				conotract		naionii pi		maloutro	valuee of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						2.25	(36)
	of therma		are not kn	own (36) =	= 0.05 x (3	1)			()	()			(
	abric hea									(36) =			20.65	(37)
Ventila	tion hea									= 0.33 × (r	1	
(00)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(00)
(38)m=	23.92	23.79	23.66	23.06	22.95	22.42	22.42	22.32	22.62	22.95	23.18	23.42	l	(38)
	ansfer c			, , , , , , , , , , , , , , , , , , , ,				1	· · · · · · · · · · · · · · · · · · ·	= (37) + (3		1	1	
(39)m=	44.58	44.44	44.32	43.71	43.6	43.07	43.07	42.97	43.27	43.6	43.83	44.07	(
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		,	Average =	Sum(39)1	12 /12=	43.7 þ	age 2 o ⁽³⁹⁾

Heat lo	oss para	ımeter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	0.9	0.89	0.89	0.88	0.88	0.86	0.86	0.86	0.87	0.88	0.88	0.88		
Numb	ar of day	re in mo	nth (Tab	lo 12)						Average =	Sum(40)1.	.12 /12=	0.88	(40)
Numbe	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
								I					l	
4. Wa	ater heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF				(1 - exp	o(-0.0003	849 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13		68]	(42)
Reduce	the annua	al average	hot water	usage by		welling is	designed	(25 x N) to achieve		se target o		1.2]	(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	er usage i	n litres pei	r day for e	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	81.62	78.65	75.68	72.72	69.75	66.78	66.78	69.75	72.72	75.68	78.65	81.62		_
Enorm	content of	botwatow	used so	laulatad m	anthly 1	100 v Vd -	~ ~ ~ ~ ~ /	Tm / 2600			<mark>m(44)₁₁₂ =</mark> ables 1b, 1		890.4	(44)
(45)m=	121.04	105.86	109.24	95.24	91.38	78.86	73.07	83.85	84.85	98.89	107.94	117.22	1407.40	(45)
lf instan	taneous w	ater heati	ng at poin	t of use (no	o hot water	storage),	enter 0 in	boxes (46		l otal = Su	m(45) ₁₁₂ =		1167.46	(45)
(46)m=	18.16	15.88	16.39	14.29	13.71	11.83	10.96	12.58	12.73	14.83	16.19	17.58		(46)
Water	storage	loss:	-											
Storag	e volum	e (litres)) includir	ng any se	olar or N	/WHRS	storage	within sa	a <mark>me ve</mark> s	sel		0		(47)
	-	-			velling, e				·					
			hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
	storage nanufact		eclared	oss fact	or is kno	wn (kWł	n/dav):)		(48)
			m Table			(.,))		(49)
•				, kWh/y	ear			(48) x (49)) =))		(50)
			-	•	loss fact	or is not	known:	(,,	/		L`	5		(00)
		•			le 2 (kW	h/litre/da	ay)				()		(51)
	-	-	see secti	on 4.3									1	
		from Ta	bie ∠a om Table	2h)		(52) (53)
					oor			(47) x (51)) v (52) v (52) -		0		
		(54) in (5	-	e, kWh/y	eal			(47) X (31))	55) =))		(54) (55)
	. ,	. , .		for each	month			((56)m = (55) × (41)	m	`	5		(00)
(56)m=	0	0	0	0	0	0	0		0	0	0	0	1	(56)
	-	÷	•	-	-			-	•	-	H11) is fro	-	l lix H	(00)
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
			I Doulol) fr	ı əm Tablı			I	1	I)	1	(58)
				om Table for each		59)m = ((58) ÷ 36	65 × (41)	m			5	I	(30)
							. ,	ng and a		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
													-	

Combi	loss ca	alculated	for ea	ch	month ((61)m =	(60)) ÷ 36	65 × (41))m							
(61)m=	41.59	36.2	38.57	7	35.86	35.54	3	32.93	34.03	35.54	4 35.86	6	38.57	38.79	41.59	7	(61)
Total h	eat rec	uired for	water	he	ating ca	alculated	d fo	or eacl	n month	(62)m	i = 0.85 :	× (4	45)m +	(46)m +	(57)m ·	 + (59)m + (61)r	n
(62)m=	162.63	142.06	147.8	1	131.1	126.93	1	11.79	107.1	119.4	4 120.7	'1	137.46	146.73	158.81		(62)
Solar DH	-IW input	calculated	using A	ppe	endix G or	Appendi	хH	(negativ	ve quantity	/) (ente	'0' if no so	olar	contribu	tion to wate	er heating	g)	
(add a	dditiona	al lines if	FGHR	Sa	and/or V	WHR	S ap	oplies	see Ap	pendi	(G)					_	
(63)m=	0	0	0		0	0		0	0	0	0		0	0	0		(63)
Output	from v	vater hea	ter													_	
(64)m=	162.63	142.06	147.8	1	131.1	126.93	1	11.79	107.1	119.4	120.7	'1	137.46	146.73	158.81		_
										C	utput from	wat	ter heate	er (annual)	112	1612.53	(64)
Heat g	ains fro	om water	heatin	ng,	kWh/mo	onth 0.2	5 ´	[0.85	× (45)m	+ (61)m] + 0.8	8 x	[(46)m	ı + (57)m	+ (59)r	m]	
(65)m=	50.64	44.25	45.96	6	40.63	39.27	3	34.45	32.8	36.77	7 37.18	3	42.52	45.59	49.37		(65)
inclu	ide (57)m in calo	culatio	n o	f (65)m	only if a	cylii	nder is	s in the o	dwellir	ng or hot	wa	ater is f	rom com	munity	heating	
5. Int	ternal g	ains (see	e Table	e 5	and 5a)):											
Metab	olic gai	ns (Table	e 5), W	att	S										-	_	
	Jan	Feb	Ма	r	Apr	May		Jun	Jul	Au	g Sep	р	Oct	Nov	Dec	;	
(66)m=	84.21	84.21	84.21		84.21	84.21	٤	34.21	84.21	84.2	84.21	1	84.21	84.21	84.21		(66)
Ligh <mark>tin</mark>	g gains	s (calcula	ted in	Ap	pendix l	L, equa	tion	L9 oi	^r L9a), a	lso se	e Table	5					
(67)m=	1 <mark>3.08</mark>	11.62	9.45		7.15	5.35		<mark>4</mark> .51	4.88	6.34	8.51		10.8	12.61	13.44		(67)
App <mark>lia</mark>	nces ga	ains (ca <mark>lc</mark>	ulated	lin	Append	dix L, ec	Jua	tion L'	13 o <mark>r L1</mark>	3a), a	so see T	Гab	ole <mark>5</mark>				
(68)m=	1 <mark>4</mark> 6.71	148.2 <mark>4</mark>	144.4	1	136.23	125.92	1	16.23	109.76	108.2	4 112.0	7	120.24	130.55	140.24		(68)
Cookir	ng gains	s (calcula	ated in	Ap	pendix	L, equa	tior	L15 ו	or L15a)	, also	see Tab	ole :	5		-		
(69)m=	31.42	31.42	31.42	2	31.42	31.42	3	31.42	31.42	31.42	31.42	2	31.42	31.42	31.42	7	(69)
Pumps	and fa	ans gains	(Table	ə 5	a)												
(70)m=	3	3	3		3	3		3	3	3	3		3	3	3		(70)
Losses	s e.g. e	vaporatic	on (neg	gati	ve valu	es) (Tal	ble	5)			-				-		
(71)m=	-67.37	-67.37	-67.3	7	-67.37	-67.37	-	67.37	-67.37	-67.3	7 -67.3	7	-67.37	-67.37	-67.37		(71)
Water	heating	g gains (T	able 5	5)							-			-	-	_	
(72)m=	68.07	65.85	61.78	3	56.43	52.78	4	17.85	44.09	49.42	2 51.64	4	57.15	63.32	66.36		(72)
Total i	nterna	l gains =						(66)	m + (67)m	ı + (68)	m + (69)m	+ (7	70)m + (1	71)m + (72)	-)m	_	
(73)m=	279.13	276.97	266.8	9	251.08	235.32	2	19.86	209.99	215.2	6 223.4	.8	239.46	257.74	271.31	7	(73)
6. So	lar gain	is:															
Solar g	ains are	calculated	using so	olar	flux from	Table 6a	and	l associ	ated equa	tions to	convert to	b the	e applica	ble orientat	tion.		
Orienta		Access F			Area			Flu			g_ Table C	` L	-	FF		Gains	
		Table 6d			m²			1 ac	ole 6a		Table 6	30	ا 	Table 6c		(W)	_
	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	3	6.79	×	0.63		×	0.7	=	26.09	(77)
Southe		0.77		x	2.3	32	x	6	2.67	×	0.63		_ × [0.7	=	44.44	(77)
Southe		0.77		x	2.3	32	x	8	5.75	x	0.63		_ × [0.7	=	60.8	(77)
	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	10	06.25	x	0.63		_ × [0.7	=	75.33	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	1	19.01	x	0.63		x	0.7	=	84.38	(77)

Southe	ast <mark>0.9x</mark>	0.77	x	2.3	2	x	11	18.15	x	0.63	x	0.7	=	-	83.77	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	2	x	11	13.91	x	0.63	x	0.7	=	- [80.76	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	2	x	10	04.39	x	0.63	x	0.7	=	- [74.02	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	2	x	9	2.85	x	0.63	×	0.7	=	- [65.83	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	2	x	6	9.27	x	0.63	×	0.7	=	Ē	49.11	(77)
Southe	ast 0.9x	0.77	x	2.3	2	x	4	4.07	x	0.63	×	0.7	=	- Г	31.25	(77)
Southe	ast 0.9x	0.77	x	2.3	2	x	3	1.49	x	0.63	×	0.7	=	- Ē	22.33	(77)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	3	6.79	i	0.63	×	0.7		- T	113.91	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	6	2.67	İ	0.63	×	0.7	=	- Г	194.03	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	8	5.75	i	0.63	×	0.7	=	- Г	265.48	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	1(06.25	i	0.63	×	0.7		- Ē	328.94	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	1'	19.01	1	0.63	×	0.7	=	- Г	368.44	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	1'	18.15	1	0.63	× ٦	0.7		- F	365.78	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	1'	13.91	1	0.63	×	0.7		- F	352.65	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1		x		04.39		0.63	×	0.7		- 1	323.18	(79)
Southw	/est <mark>0.9x</mark>	0.77	×	10.1	13	x	9	2.85	ĺ	0.63	× ٦	0.7		- F	287.46	(79)
Southw	/est <mark>0.9x</mark>	0.77	x	10.1	13	x	6	9.27	1	0.63	×	0.7		- F	214.44	(79)
Sout <mark>hw</mark>	/est _{0.9x}	0.77	x	10.1	13	X	4	4.07		0.63	x	0.7	=	Ē	136.44	(79)
Southw	/est _{0.9x}	0.77	×	10.1		x	3	1.49		0.63	×	0.7			97.48	(79)
	L L						<u> </u>				_					
Solar	noine in i	watta aala	ulata d	for cool	a manth				(92)	$C_{\rm H}$ (7.4) m	(00)~~					
Solar	ains in '	watts, <mark>calc</mark>	luated	tor eac	n montr				(83)m	= Sum(74)m.	(82)m					
	í					-	10 55	133 /1	<u> </u>		× ′	167.68	110.81	1		(83)
(83)m=	140	238.47 3	326.28	404.27	452.82	44	49.55 83)m	433.41 watts	397		263.5	5 167.68	119.81	1		(83)
(83)m= Total ູ	140 Jains — ir	238.47 3 nternal and	326.28 d solar	404.27 (84)m =	452.82 = (73)m	44 + (8	83)m	, watts	397	19 353.29	263.5		I			
(83)m= Total ((84)m=	140 jains — ir 419.12	238.47 3 nternal and 515.43 5	326.28 d solar 593.17	404.27 (84)m = 655.36	452.82 = (73)m 688.14	44 + (8			<u> </u>	19 353.29	× ′		119.81 391.12			(83) (84)
(83)m= Total ((84)m= 7. Me	140 Jains – ir 419.12 Pan inter	238.47 3 nternal and 515.43 5 nal temper	326.28 d solar 593.17 rature (404.27 (84)m = 655.36 (heating	452.82 = (73)m 688.14 seasor	44 + (8 66	83)m 69.41	, watts 643.4	397 612	19 353.29 45 576.77	263.5		I			(84)
(83)m= Total g (84)m= 7. Me Temp	140 Jains – ir 419.12 Dean inter	238.47 3 nternal and 515.43 5 nal temper during hea	326.28 d solar 593.17 rature (ating po	404.27 (84)m = 655.36 (heating eriods in	452.82 (73)m 688.14 seasor the live	44 + (8 66	83)m 69.41 area f	, watts 643.4 from Tat	397 612	19 353.29 45 576.77	263.5		I		21	
(83)m= Total g (84)m= 7. Me Temp	140 Jains – Ii 419.12 Dean inter Derature ation fac	238.47 3 nternal and 515.43 5 nal temper during hea tor for gain	326.28 d solar 593.17 rature (ating points for li	404.27 (84)m = 655.36 (heating eriods in iving are	452.82 (73)m 688.14 seasor the livi ea, h1,n	44 + (8 60 n) ing a	83)m 69.41 area f ee Ta	, watts 643,4 from Tab ble 9a)	397 612	19 353.29 45 576.77 Th1 (°C)	263.5	2 425.43	I		21	(84)
(83)m= Total g (84)m= 7. Me Temp	140 Jains – ir 419.12 Dean inter	238.47 3 nternal and 515.43 5 nal temper during hea	326.28 d solar 593.17 rature (ating po	404.27 (84)m = 655.36 (heating eriods in	452.82 (73)m 688.14 seasor the livi	44 + (8 60 n) ing a n (se	83)m 69.41 area f ee Ta Jun	, watts 643.4 from Tat	397 612 ble 9,	19 353.29 45 576.77	263.5	2 425.43	I	 2	21	(84)
(83)m= Total g (84)m= 7. Me Temp	140 Jains – Ii 419.12 Dean inter Derature ation fac	238.47 3 Internal and 515.43 5 nal temper during hea tor for gain Feb	326.28 d solar 593.17 rature (ating points for li	404.27 (84)m = 655.36 (heating eriods in iving are	452.82 (73)m 688.14 seasor the livi ea, h1,n	44 + (8 60 n) ing a n (se	83)m 69.41 area f ee Ta	, watts 643,4 from Tab ble 9a)	397 612 ble 9,	19 353.29 45 576.77 Th1 (°C) Jg Sep	263.5	2 425.43	391.12	 2	21	(84)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m=	140 Jains – ir 419.12 Derature Derature Ation fac Jan 0.99	238.47 3 Internal and 515.43 5 nal temper during hea tor for gain Feb	326.28 solar 593.17 rature (ating puns for li Mar 0.89	404.27 (84)m = 655.36 (heating eriods in ving are Apr 0.76	452.82 = (73)m 688.14 seasor the livition ea, h1,n May 0.58	44 + (8 66 n) ing (so	83)m 89.41 area f ee Ta Jun 0.41	, watts 643,4 from Tab ble 9a) Jul 0.29	397 612 ble 9, Ai 0.3	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51	263.5 503.0	2 425.43 Nov	391.12 Dec	 2	21	(84)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m=	140 Jains – ir 419.12 Derature Derature Ation fac Jan 0.99	238.47 3 nternal and 515.43 5 nal temper during hea tor for gain Feb 0.96 I temperat	326.28 solar 593.17 rature (ating puns for li Mar 0.89	404.27 (84)m = 655.36 (heating eriods in ving are Apr 0.76	452.82 = (73)m 688.14 seasor the livition ea, h1,n May 0.58	44 + (8 66 n) ing (so	83)m 89.41 area f ee Ta Jun 0.41	, watts 643,4 from Tab ble 9a) Jul 0.29	397 612 ble 9, Ai 0.3	19 353.29 45 576.77 Th1 (°C)	263.5 503.0	2 425.43 Nov 0.97	391.12 Dec	 2	21	(84)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mean (87)m=	140 jains – in 419.12 ean inter perature ation fac Jan 0.99 interna 20.35	238.473anternal and515.435nal temperduring heator for gainFeb0.96temperati20.56	326.28 593.17 rature (ating points for li Mar 0.89 ure in l 20.78	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76 iving are 20.93	452.82 = (73)m 688.14 seasor the livities, h1,n May 0.58 ea T1 (f 20.99	44 + (((60 n) ing () ing () ing () ing () ing ()	83)m 69.41 area f ee Ta Jun 0.41 w ste 21	, watts 643,4 From Tat ble 9a) Jul 0.29 ps 3 to 7 21	397 612 0le 9, 0.3 7 in T 2	19 353.29 45 576.77 Th1 (°C)	263.5 503.0	2 425.43 Nov 0.97	391.12 Dec 0.99	 2	21	(84) (85) (86)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mean (87)m=	140 jains – in 419.12 ean inter perature ation fac Jan 0.99 interna 20.35	238.47 3 nternal and 515.43 5 nal temper during hea tor for gain Feb 0.96 I temperati 20.56 5 during hea	326.28 593.17 rature (ating points for li Mar 0.89 ure in l 20.78	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76 iving are 20.93	452.82 = (73)m 688.14 seasor the livities, h1,n May 0.58 ea T1 (f 20.99	44 + (() 66 n) ing ; follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21	, watts 643,4 From Tat ble 9a) Jul 0.29 ps 3 to 7 21	397 612 0le 9, 0.3 7 in T 2	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C)	263.5 503.0	2 425.43 Nov 0.97 20.61	391.12 Dec 0.99		21	(84) (85) (86)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mear (87)m= Temp (88)m=	140 pains – in 419.12 perature ation fac Jan 0.99 n interna 20.35 perature 20.17	238.473Internal and515.435nal temperduring heator for gainFeb0.96I temperati20.56during hea20.17	326.28 solar 593.17 rature (ating points for li Mar 0.89 ure in l 20.78 ating points 20.18	404.27 (84)m = 655.36 (heating eriods in ving are Apr 0.76 iving are 20.93 eriods in 20.19	452.82 (73)m 688.14 seasor the livities, h1,n May 0.58 ea T1 (f 20.99 n rest of 20.19	44 + (8 66 n) ing a n (se collo	area f ee Ta Jun 0.41 w ste 21 velling 20.2	, watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2	397 612 612 612 0.3 7 in T 2 ble § 20.	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C)	263.5 503.0 0ct 0.81 20.91	2 425.43 Nov 0.97 20.61	391.12 Dec 0.99 20.3		21	(84) (85) (86) (87)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa	140 pains – in 419.12 perature ation fac Jan 0.99 n interna 20.35 perature 20.17	238.473internal and515.43515.43al temperduring headuring heator for gainFeb0.96l temperati20.56during hea20.17tor for gain	326.28 solar 593.17 rature (ating po- ns for li Mar 0.89 ure in l 20.78 ating po- 20.18 ns for r	404.27 (84)m = 655.36 (heating eriods ir iving are 0.76 iving are 20.93 eriods ir 20.19 est of du	452.82 (73)m 688.14 seasor the livities, h1,n May 0.58 ea T1 (f 20.99 n rest of 20.19 welling,	44 + (8 66 n) ing (si collo	area f ee Ta Jun 0.41 w ste 21 velling 20.2	, watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2	397 612 612 612 0.3 7 in T 2 ble § 20.	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 20.19	263.5 503.0 0ct 0.81 20.91	2 425.43 Nov 0.97 20.61	391.12 Dec 0.99 20.3		21	(84) (85) (86) (87)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	140 gains – in 419.12 can inter can internal 0.99 internal 20.35 cerature 20.17 ation fac 0.98	238.473anternal and515.435nal temperduring heaetor for gainFeb0.96I temperati20.56during hea20.17etor for gain0.95	326.28 solar s	404.27 (84)m = 655.36 (heating eriods in ving are 0.76 iving are 20.93 eriods in 20.19 est of dv 0.72	452.82 (73)m 688.14 seasor the livities, h1,m May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53	44 + (8 66 n) ing 5 ing 5 collo	83)m 89.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 m (se 0.36	, watts 643,4 From Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24	397 612 612 ble 9, 0.3 7 in T 2' ble 9 0.3 7 in T 2' 9a) 0.2	19 353.29 45 576.77 Th1 (°C) ug Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46	263.5 503.0 503.0 0.81 20.91 20.19	2 425.43 Nov 0.97 20.61 20.18	391.12 Dec 0.99 20.3 20.18		21	(84) (85) (86) (87) (88)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mear (87)m= Temp (88)m= Utilisa (89)m= Mear	140 gains – in 419.12 can inter berature ation fac Jan 0.99 interna 20.35 berature 20.17 ation fac 0.98 interna	238.473Internal and515.435nal temperduring heator for gainFeb0.96I temperate20.56during hea20.17tor for gain0.95I temperate	326.28 solar ating provided 0.89 ure in I 20.78 ating provided 20.18 ns for r 0.87 ure in t	404.27 (84)m = 655.36 (heating are a second seco	452.82 (73)m 688.14 seasor the livition ea, h1,n May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwell	44 + (8 66 n) ing (se f dw f dw h2, (ling	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 m (se 0.36 T2 (fo	, watts 643,4 from Tat ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 pllow ste	397 612 612 612 0.3 7 in T 2 0.3 90 0.2 90 0.2 90 90 0.2	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46 to 7 in Table	263.5 503.0 503.0 0.81 20.91 20.19 0.77 e 9c)	2 425.43 Nov 0.97 20.61 20.18 0.96	391.12 Dec 0.99 20.3 20.18 0.99		21	(84) (85) (86) (87) (88) (89)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	140 gains – in 419.12 can inter can internal 0.99 internal 20.35 cerature 20.17 ation fac 0.98	238.473Internal and515.435nal temperduring heator for gainFeb0.96I temperate20.56during hea20.17tor for gain0.95I temperate	326.28 solar s	404.27 (84)m = 655.36 (heating eriods in ving are 0.76 iving are 20.93 eriods in 20.19 est of dv 0.72	452.82 (73)m 688.14 seasor the livities, h1,m May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53	44 + (8 66 n) ing (se f dw f dw h2, (ling	83)m 89.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 m (se 0.36	, watts 643,4 From Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24	397 612 612 ble 9, 0.3 7 in T 2' ble 9 0.3 7 in T 2' 9a) 0.2	19 353.29 45 576.77 Th1 (°C)	263.5 503.0 0ct 0.81 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96 19.7	391.12 Dec 0.99 20.3 20.18 0.99 19.26			(84) (85) (86) (87) (88) (89) (90)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mear (87)m= Temp (88)m= Utilisa (89)m= Mear	140 gains – in 419.12 can inter berature ation fac Jan 0.99 interna 20.35 berature 20.17 ation fac 0.98 interna	238.473Internal and515.435nal temperduring heator for gainFeb0.96I temperate20.56during hea20.17tor for gain0.95I temperate	326.28 solar ating provided 0.89 ure in I 20.78 ating provided 20.18 ns for r 0.87 ure in t	404.27 (84)m = 655.36 (heating are a second seco	452.82 (73)m 688.14 seasor the livition ea, h1,n May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwell	44 + (8 66 n) ing (se f dw f dw h2, (ling	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 m (se 0.36 T2 (fo	, watts 643,4 from Tat ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 pllow ste	397 612 612 612 0.3 7 in T 2 0.3 90 0.2 90 0.2 90 90 0.2	19 353.29 45 576.77 Th1 (°C)	263.5 503.0 0ct 0.81 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96	391.12 Dec 0.99 20.3 20.18 0.99 19.26		21	(84) (85) (86) (87) (88) (89)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mear (87)m= Temp (88)m= Utilisa (89)m= Mear (90)m=	140 gains – ir 419.12 can inter can inter can inter can inter can inter can interna 0.99 interna 20.35 canature 20.17 ation fac 0.98 interna 19.32	238.473Internal and515.435nal temperduring heator for gainFeb0.96I temperati20.17tor for gain0.95I temperati19.62	326.28 solar s	404.27 (84)m = 655.36 (heating eriods in ving are 0.76 iving are 20.93 eriods in 20.19 est of dv 0.72 he rest 20.12	452.82 (73)m 688.14 seasor the livities, h1,m May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwell 20.18	44 + (8 60 1) ing 5 f dw h2, (1) h2, (1) 10 10 10 10 10 10 10 10 10 10 10 10 10	83)m 89.41 area f ee Ta Jun 0.41 w ste 21 relling 20.2 m (se 0.36 T2 (fc 20.2	, watts 643,4 From Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 blow ste 20.2	397 612 612 612 0.3 7 in T 2 8 8 8 9 9 9 9 9 9 20 9 20 9 20	19 353.29 45 576.77 Th1 (°C)	263.5 503.0 0ct 0.81 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96 19.7	391.12 Dec 0.99 20.3 20.18 0.99 19.26			(84) (85) (86) (87) (88) (89) (90)
(83)m= Total ((84)m= 7. Me Temp Utilisa (86)m= Mear (87)m= Temp (88)m= Utilisa (89)m= Mear (90)m=	140 gains – ir 419.12 can inter can inter can inter can inter can inter can interna 0.99 interna 20.35 canature 20.17 ation fac 0.98 interna 19.32	238.47 3 Internal and 5 515.43 5 nal temper during hea tor for gain Feb 0.96 I temperate 20.56 during hea 20.17 tor for gain 0.95 I temperate 19.62 I temperate	326.28 solar s	404.27 (84)m = 655.36 (heating eriods in ving are 0.76 iving are 20.93 eriods in 20.19 est of dv 0.72 he rest 20.12	452.82 (73)m 688.14 seasor the livities, h1,m May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwell 20.18	44 + (8 66 n (so collo f dw h2, (ing f dw	83)m 89.41 area f ee Ta Jun 0.41 w ste 21 relling 20.2 m (se 0.36 T2 (fc 20.2	, watts 643,4 From Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 blow ste 20.2	397 612 612 612 0.3 7 in T 2 8 8 8 9 9 9 9 9 9 20 9 20 9 20	19 353.29 19 353.29 45 576.77 Th1 (°C) Jg Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46 to 7 in Tabl 2 2 20.19 f - fLA) × T2	263.5 503.0 0ct 0.81 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96 19.7 ving area ÷ (vince the second se	391.12 Dec 0.99 20.3 20.18 0.99 19.26			(84) (85) (86) (87) (88) (89) (90)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

												I	(02)
(93)m= 19.8	20.06	20.32	20.5	20.56	20.57	20.57	20.57	20.57	20.48	20.12	19.75		(93)
8. Space hea Set Ti to the	Ŭ I			ro obtoir	od at at	on 11 of	Toble O	o oo tha	+ Ti m_(76)m.on	d ro oolo	vulata	
the utilisation					ieu al Sie	эрттог	Table 9	0, 50 ina	t 11,111=(<i>i</i> 0)111 att	u re-caic	Julate	
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation fac	tor for g	ains, hm	:					· · ·					
(94)m= 0.98	0.95	0.87	0.73	0.55	0.38	0.27	0.29	0.48	0.79	0.95	0.99		(94)
Useful gains,	hmGm	, W = (94	4)m x (84	4)m							•		
(95)m= 411.37	488.43	518.72	479.89	381.6	256.86	171.09	179.31	278.38	396.32	405.91	385.93		(95)
Monthly aver	age exte	ernal tem	perature	e from Ta	able 8								
(96)m= 4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate	e for me	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m= 690.84	673.92	612.37	507.02	386.15	257.22	171.12	179.36	279.87	430.8	570.78	685.06		(97)
Space heatin	i	1		nonth, k	Wh/mont	h = 0.02	24 x [(97])m – (95		1		I	
(98)m= 207.93	124.65	69.67	19.53	3.38	0	0	0	0	25.66	118.7	222.56		_
							Tota	l per year	(kWh/yeai) = Sum(9	8)15,912 =	792.09	(98)
Space heatin	ng require	ement in	kWh/m²	²/year								15.91	(99)
9a. Energy red	quiremer	nts – Indi	vidual h	eating s	vstems i	ncluding	micro-C	CHP)					
Space heati						<u> </u>							
Fraction of sp	-	at from s	econdar	y/supple	mentary	system						0	(201)
Fraction of s	oace hea	at from m	nain syst	em(s)			(20 <mark>2)</mark> = 1 -	(201) =				1	(202)
Fraction of to							(204) = (2)	02) × [1 –	(203)] =			1	(204)
		-							()]				
Efficiency of			-									93.4	(206)
Efficiency of	seconda	ry/supple	ementar	y heatin	g system	1, %						0	(208)
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/y	ear
Space heatin	ř	ement (c		d above)					i		1	
207.93	124.65	69.67	19.53	3.38	0	0	0	0	25.66	118.7	222.56		
(211)m = {[(98	3)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
222.62	133.46	74.6	20.91	3.62	0	0	0	0	27.47	127.09	238.29		
							Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	7	848.06	(211)
Space heatin	ng fuel (s	econdar	y), kWh/	month									
= {[(98)m x (20	01)]}x1	00 ÷ (20	8)								1	1	
(215)m= 0	0	0	0	0	0	0	0	0	0	0	0		_
							Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	Ē	0	(215)
Water heating	g												
Output from w												I	
162.63	142.06	147.81	131.1	126.93	111.79	107.1	119.4	120.71	137.46	146.73	158.81		_
Efficiency of w	ater hea											80.3	(216)
(217)m= 85.67	84.72	83.28	81.48	80.53	80.3	80.3	80.3	80.3	81.74	84.52	85.9		(217)
Fuel for water	•												
(219)m = (64)				157.61	120.22	122.20	148.69	150.33	168.17	173.6	101 00		
(219)m= 189.83	167.68	177.48	160.9	137.01	139.22	133.38		150.33 I = Sum(2		173.0	184.88	4054 70	
A mm							TUId	. – Ourri(2		A/In /		1951.76	(219)
Annual totals Space heating		ad main	system	1					K	Wh/year		kWh/yea 848.06	
	,	- <i></i> ,an	5,50011	-								0-0.00	

					1
Water heating fuel used				1951.76	
Electricity for pumps, fans and electric keep-hot					
central heating pump:			30]	(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =		75	(231)
Electricity for lighting				230.99	(232)
12a. CO2 emissions – Individual heating systems	including micro-C	CHP			-
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	183.18	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	421.58	(264)
Space and water heating	(261) + (262) + (263	3) + (264) =		604.76	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	119.88	(268)
Total CO2, kg/year TER =		sum of (265)(271) =		763.57 15.33	(272)

Assessor Name:Stroma FSAP 2012Software Version:Version: 1.0.4.23Software Name:Stroma FSAP 2012Software Version:Version: 1.0.4.23Property Address: Flat 4Address :3 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON1. Overall dwelling dimensions:	
Address : 3 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON 1. Overall dwelling dimensions:	
1. Overall dwelling dimensions:	
Area(m²)Av. Height(m)Volume(m³)Ground floor92.6(1a) x2.5(2a) =231.5(3a)	3)
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 92.6 (4)	
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 231.5$ (5)	
2. Ventilation rate:	
main heatingsecondary heatingothertotal m^3 per hourNumber of chimneys0+0+0=0x 40 =0(6a)Number of open flues0+0+0=0x 20 =0(6b)	
Number of intermittent fans $3 \times 10 = 30$ (7a)	a)
Air changes per hour	
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 30 \div (5) = 0.13$ (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16)	
Number of storeys in the dwelling (ns) 0 (9) Additional infiltration 0 (10) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction 0 (11) if both types of wall are present, use the value corresponding to the greater wall area (after 0 (11)))
deducting areas of openings); if equal user 0.35	
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0	
If no draught lobby, enter 0.05, else enter 0	
Percentage of windows and doors draught stripped 0 (14)Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ 0	
(0) + (40) + (42) + (42) + (45)	
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.38 (18)	÷
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used	<i>''</i>
Number of sides sheltered 2 (19))
Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.85 (20)))
)
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.32 (21)	
Infiltration rate incorporating shelter factor (21) = (18) x (20) = 0.32 (21) Infiltration rate modified for monthly wind speed (21) (21) (21)	
Infiltration rate modified for monthly wind speed	
Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 Image: Content of the second sec	

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter and	d wind s	peed) =	(21a) x	(22a)m					
	0.41	0.4	0.4	0.35	0.35	0.31	0.31	0.3	0.32	0.35	0.36	0.38		
		<i>ctive air</i> al ventila	•	rate for t	he applic	cable ca	se						0	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (N5)) , othe	rwise (23b) = (23a)			0	(23b)
lf bala	anced wit	n heat reco	overy: effic	iency in %	allowing for	or in-use f	actor (fror	n Table 4h	i) =				0	(23c)
a) If	balance	ed mech	anical ve	entilation	with hea	at recove	ery (MV	HR) (24a	a)m = (22	2b)m + (1	23b) × [′	l 1 – (23c)	-	
, (24a)m=	0	0	0	0	0	0	0	0	0	0	0	0	-	(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	covery (I	MV) (24t)m = (22	2b)m + (2	23b)		I	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If v	whole h	Iouse ex	tract ver	ntilation c	or positiv	e input v	ventilatio	on from o	outside			•		
i	f (22b)r	n < 0.5 >	« (23b), t	then (24d	c) = (23b); otherv	wise (24	c) = (22	b) m + 0.	5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				iole hous m = (22t		•				0.5]				
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(24d)
Effec	ctive air	change	rate - er	nter (24a) or (24b) or (24	c) or (24	d) in bo	x (25)	-		_		
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.57	0.57		(25)
3. Hea	at losse	s and he	eat loss i	paramete	er:									_
		Gros area	ss	Openin m	gs	Net Ar A ,r		U-val W/m2		A X U (W/I	<)	k-value kJ/m²·ł		A X k kJ/K
Windo	ws Type					10.98		/[1/(1.4)+		14.56				(27)
	ws Type					2.7		/[1/(1.4)+	· 0.04] =	3.58	Ħ			(27)
	ws Type					2.7		/[1/(1.4)+		3.58	Ħ			(27)
Walls T		34.	5	10.98	3	23.52		0.18		4.23	H r			(29)
Walls T		12.		2.7	, 	9.8	x	0.18		1.76	=		\exists	(29)
Walls T		23.2		2.7		20.55		0.18		3.7	=		\exists	(29)
		elements		2.1		70.25		0.10		0.1				(31)
Party w			,			47	,	0	= [0				(32)
Party fl						92.6	=		I		L [\dashv	(32a)
Party c						92.6					L L		\dashv	(32b)
-	l wall **					146.5					L L		\dashv	(32c)
* for wind	dows and	l roof wind		effective wil		lue calcul		g formula 1	1/[(1/U-valu	ie)+0.04] a	L s given in	paragraph	3.2	(020)
			= S (A x					(26)(30) + (32) =				31.41	(33)
Heat ca	apacity	Cm = S	(Axk)	,					((28)	.(30) + (32	2) + (32a).	(32e) =	19835	
Therma	al mass	parame	eter (TMI	⊃ = Cm ÷	TFA) in	⊨kJ/m²K			Indica	tive Value	Medium		250	(35)
	-		nere the de tailed calc	etails of the ulation.	constructi	on are not	t known pi	recisely the	e indicative	values of	TMP in Ta	able 1f		
Therma	al bridg	es : S (L	. x Y) cal	culated u	using Ap	pendix ł	<						5.39	(36)
if details	of therma	al bridging	are not kr	10wn (36) =	= 0.05 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			36.8	(37)

Ventila	ation hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	44.66	44.41	44.16	43.01	42.79	41.79	41.79	41.6	42.17	42.79	43.23	43.69		(38)
Heat ti	ransfer c	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	81.46	81.21	80.96	79.81	79.59	78.59	78.59	78.4	78.97	79.59	80.03	80.49		_
Heatle		motor (l	ער ים ור	/m21/						Average = = (39)m ÷	Sum(39) ₁ .	12 /12=	79.81	(39)
(40)m=	oss para 0.88	0.88	0.87	0.86	0.86	0.85	0.85	0.85	0.85	= (39)III ÷	0.86	0.87		
(40)11-	0.00	0.00	0.07	0.00	0.00	0.00	0.00	0.00			Sum(40)1.		0.86	(40)
Numbe	er of day	rs in moi	nth (Tab	le 1a)		-			-					
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater heat	ing ene	rgy requ	irement:								kWh/ye	ear:	
Assum	ned occu	ipancy. I	N								2	66		(42)
if TF	A > 13.9	9, N = 1		: [1 - exp	(-0.0003	849 x (TF	FA -13.9)2)] + 0.0	0013 x (TFA -13.				()
	A £ 13.9	,	ator usa	no in litre	e nor da	ve hV ve	orano -	(25 x N)	+ 36		07	07		(42)
								to achieve		se target o		.37		(43)
not more	e that 125	litres per	person pe	r day (all w	ater use, l	hot and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
				ach m <mark>onth</mark>						i				
(44)m=	107.1	103.21	99.31	95.42	91.52	87.63	87.63	91.52	95.42	99.31	103.21	107.1		
Energy	content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	m x nm x E	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		1168.4	(44)
(45)m=	158.83	138.92	143.35	124.97	119.92	103.48	95.89	110.03	111.35	12 <mark>9.76</mark>	141.65	153.82		
If instan	topoquo u	otor hooti	ng ot poin	t of upp /m	bot wata	, otorogo)	ontor 0 in	hoven (16		Total = Su	m(45) ₁₁₂ =		1531.96	(45)
				·				boxes (46)		40.40	04.05	00.07		(46)
	23.82 storage		21.5	18.75	17.99	15.52	14.38	16.5	16.7	19.46	21.25	23.07		(46)
	-		includir	ng any se	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
If com	munity h	eating a	ind no ta	ank in dw	velling, e	nter 110	litres in	(47)						
			hot wate	er (this ir	ncludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in (47)			
	storage		eclared I	oss facto	or is kno	wn (kWł	n/dav).					0		(48)
,	erature fa						"day).					0		(49)
•				e, kWh/ye	ear			(48) x (49)) =			0		(50)
			-	cylinder		or is not						0		(/
		-		rom Tabl	le 2 (kW	h/litre/da	ay)					0		(51)
	munity h e factor	-		on 4.3								0		(52)
	erature fa			2b							<u> </u>	0 0		(52)
Energy	y lost fro	m water	storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
	, (50) or (-	,								0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinder contair	ns dedicate	d solar sto	rage, (57)r	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circui	t loss (ar	nual) fro	om Table	93							0		(58)
Primary circui					59)m = ((58) ÷ 36	65 × (41)	m					
(modified b	y factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0	_	(59)
Combi loss ca	alculated	for each	month (61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 50.96	46.03	50.61	47.06	46.64	43.21	44.66	46.64	47.06	50.61	49.32	50.96		(61)
Total heat rec	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	1
(62)m= 209.79	184.94	193.96	172.03	166.56	146.69	140.54	156.67	158.4	180.37	190.96	204.78		(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if	FGHRS	and/or V	VWHRS	applies	, see Ap	pendix C	G)					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	vater hea	ter											
(64)m= 209.79	184.94	193.96	172.03	166.56	146.69	140.54	156.67	158.4	180.37	190.96	204.78		_
							Outp	out from wa	ater heate	r (annual)₁	12	2105.7	(64)
Heat gains fro	om water	heating,	kWh/m	onth 0.2	5´[0.85	× (45)m	+ (61)m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 65.55	57.7	60.32	53. <mark>32</mark>	51.53	45.21	43.05	48.25	48.79	55.8	59.43	63.88		(65)
in <mark>clude</mark> (57))m in c <mark>al</mark> o	culation of	of (65)m	only if c	ylinder i	s in th <mark>e</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	e Table 5	and 5a):									
Met <mark>abolic</mark> gai	ns (Table	<u>5), Wat</u>	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98		(66)
Lighting gains	calcula	ted in Ap	pendix l	L, equat	ion L9 o	r L9a), a	lso see	Table 5	-				
(67)m= 22.26	19.77	16.08	12.17	9.1	7.68	8.3	10.79	14.48	18.39	21.46	22.88		(67)
Appliances ga	•						,	see Ta	ble 5				
(68)m= 243.78	246.31	239.94	226.36	209.23	193.13	182.38	179.85	186.22	199.79	216.92	233.02		(68)
Cooking gains	s (calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m= 36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3		(69)
Pumps and fa	ins gains	(Table 5	ōa)		-	-	-		-				
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. e	vaporatic	on (negat	tive valu	es) (Tab	ole 5)	-	-		-	-			
(71)m= -106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39		(71)
Water heating	g gains (T	able 5)											
(72)m= 88.11	85.86	81.07	74.05	69.26	62.79	57.86	64.85	67.76	75	82.54	85.87		(72)
Total interna	l gains =	:			(66)	m + (67)m	n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m	-	
(73)m= 420.04	417.83	402.98	378.49	353.49	329.5	314.43	321.38	334.36	359.07	386.82	407.67		(73)
6. Solar gain													
Solar gains are		-	r flux from	Table 6a			itions to co	nvert to th	e applicat		ion.		
Orientation:	Access F Table 6d	actor	Area m²		Flu Tal	x ble 6a	т	g_ able 6b	Та	FF able 6c		Gains (W)	

Northeast 0.9x	0.77	×	2.7	×	11.28	×	0.63	x	0.7	=	9.31	(75)
Northeast 0.9x	0.77	x	2.7	x	22.97	×	0.63	x	0.7	=	18.95	(75)
Northeast 0.9x	0.77	x	2.7	x	41.38	x	0.63	x	0.7	=	34.14	(75)
Northeast 0.9x	0.77	x	2.7	x	67.96	×	0.63	x	0.7	=	56.07	(75)
Northeast 0.9x	0.77	x	2.7	x	91.35	×	0.63	x	0.7	=	75.37	(75)
Northeast 0.9x	0.77	x	2.7	x	97.38	x	0.63	x	0.7	=	80.36	(75)
Northeast 0.9x	0.77	x	2.7	×	91.1	×	0.63	x	0.7	=	75.17	(75)
Northeast 0.9x	0.77	x	2.7	x	72.63	x	0.63	x	0.7	=	59.93	(75)
Northeast 0.9x	0.77	x	2.7	x	50.42	x	0.63	x	0.7	=	41.6	(75)
Northeast 0.9x	0.77	x	2.7	x	28.07	×	0.63	x	0.7	=	23.16	(75)
Northeast 0.9x	0.77	x	2.7	x	14.2	×	0.63	x	0.7	=	11.71	(75)
Northeast 0.9x	0.77	×	2.7	x	9.21	×	0.63	x	0.7	=	7.6	(75)
Southeast 0.9x	0.77	x	2.7	x	36.79	×	0.63	x	0.7	=	30.36	(77)
Southeast 0.9x	0.77	x	2.7	x	62.67	×	0.63	x	0.7	=	51.72	(77)
Southeast 0.9x	0.77	x	2.7	x	85.75	×	0.63	x	0.7	=	70.76	(77)
Southeast 0.9x	0.77	x	2.7	x	106.25	x	0.63	x	0.7	=	87.67	(77)
Southeast 0.9x	0.77	x	2.7	x	119.01	x	0.63	x	0.7	=	98.2	(77)
Southeast 0.9x	0.77	x	2.7	X	118.15	x	0.63	x	0.7	=	97.49	(77)
Southeast 0.9x	0.77	x	2.7	х	113.91	x	0.63	x	0.7	=	93.99	(77)
Southeast 0.9x	0.77	x	2.7	x	104.39	×	0.63	x	0.7	=	86.14	(77)
Southeast 0.9x	0.7 <mark>7</mark>	x	2.7	x	92.85	x	0.63	x	0.7	=	76.62	(77)
Southeast 0.9x	0.77	x	2.7	×	69.27	х	0.63	×	0.7	=	57.16	(77)
Southeast 0.9x	0.77	x	2.7	x	44.07	×	0.63	x	0.7	=	36.37	(77)
Southeast 0.9x	0.77	x	2.7	x	31.49	x	0.63	x	0.7	=	25.98	(77)
Southwest _{0.9x}	0.77	x	10.98	x	36.79		0.63	x	0.7	=	123.47	(79)
Southwest _{0.9x}	0.77	x	10.98	x	62.67		0.63	x	0.7	=	210.31	(79)
Southwest _{0.9x}	0.77	x	10.98	x	85.75		0.63	x	0.7	=	287.75	(79)
Southwest _{0.9x}	0.77	x	10.98	x	106.25		0.63	x	0.7	=	356.54	(79)
Southwest _{0.9x}	0.77	x	10.98	x	119.01		0.63	x	0.7	=	399.36	(79)
Southwest0.9x	0.77	x	10.98	x	118.15		0.63	x	0.7	=	396.47	(79)
Southwest _{0.9x}	0.77	x	10.98	x	113.91		0.63	x	0.7	=	382.24	(79)
Southwest _{0.9x}	0.77	x	10.98	x	104.39		0.63	x	0.7	=	350.3	(79)
Southwest0.9x	0.77	x	10.98	x	92.85		0.63	x	0.7	=	311.58	(79)
Southwest _{0.9x}	0.77	x	10.98	×	69.27		0.63	x	0.7	=	232.44	(79)
Southwest _{0.9x}	0.77	x	10.98	×	44.07		0.63	x	0.7	=	147.88	(79)
Southwest _{0.9x}	0.77	x	10.98	x	31.49		0.63	x	0.7	=	105.66	(79)

Solar g	Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$													
(83)m=	163.14	280.98	392.66	500.29	572.93	574.32	551.4	496.36	429.8	312.75	195.96	139.25		(83)
Total g	ains – ii	nternal a	nd solar	⁻ (84)m =	= (73)m -	⊦ (83)m	, watts				· · · ·		-	
(84)m=	583.18	698.81	795.64	878.77	926.42	903.82	865.83	817.74	764.16	671.83	582.78	546.91		(84)
7. Mean internal temperature (heating season)														
Temperature during heating periods in the living area from Table 9, Th1 (°C)												21	(85)	
Utilisa	ation fac	tor for g	ains for l	iving are	ea, h1,m	(see Ta	ble 9a)							
Utilisation factor for gains for living area, h1,m (see Table 9a) Stroma FSAM 2012 VESDon 1.0423 (SAM 9.52) - http://www.stuma.com/ul Aug Sep Oct Nov Dec													Page	5 of 7

(86)m= 1 0.99 0.97 0.9 0.75 0.55 0.4 0.44 0.69 0.94 0.99 1	(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	
(87)m= 20.17 20.34 20.57 20.81 20.95 20.99 21 21 20.98 20.79 20.43 20.14	(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)	
(88)m= 20.18 20.19 20.19 20.2 20.2 20.21 20.21 20.21 20.21 20.2 20.2	(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
(89)m= 1 0.99 0.96 0.88 0.7 0.49 0.33 0.37 0.62 0.91 0.99 1	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	
(90)m= 19.07 19.33 19.65 19.99 20.16 20.21 20.21 20.21 20.19 19.97 19.46 19.03	(90)
$fLA = Living area \div (4) = 0.3$	
	<u> </u>
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 19.46 19.68 19.97 20.28 20.44 20.48 20.49 20.49 20.47 20.25 19.8 19.42	(92)
(92)m= 19.46 19.68 19.97 20.28 20.44 20.48 20.49 20.47 20.25 19.8 19.42 Apply adjustment to the mean internal temperature from Table 4e, where appropriate	(32)
(93)m= 19.46 19.68 19.97 20.28 20.44 20.48 20.49 20.49 20.47 20.25 19.8 19.42	(93)
8. Space heating requirement	()
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate	
the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm:	
(94)m= 1 0.99 0.96 0.88 0.72 0.51 0.35 0.39 0.64 0.92 0.99 1	(94)
Useful gains, hmGm , W = (94)m x (84)m	
(95)m= 580.36 688.85 762.83 771.73 663.89 459.39 305.29 320.09 490.73 614.91 575.41 545.07	(95)
Monthly average external temperature from Table 8	(06)
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2	(96)
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m] (97)m= 1234.65 1200.52 1090.98 908.27 695.47 462.4 305.53 320.54 502.97 768.41 1016.31 1225.06	(97)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$	(01)
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
$Total per year (kWh/year) = Sum(98)_{15912} = 2134$.14 (98)
	15 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating: Fraction of space heat from secondary/supplementary system	(201)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	
Efficiency of main space heating system 1 93	4 (206)
Efficiency of secondary/supplementary heating system, %	(208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec k	Vh/year
Space heating requirement (calculated above)	
486.79 343.85 244.14 98.31 23.49 0 0 0 0 114.2 317.45 505.91	
$(211)m = \{[(98)m \times (204)] \} \times 100 \div (206)$	(211)
521.19 368.14 261.39 105.26 25.15 0 0 0 0 122.27 339.88 541.66	
Total (kWh/year) =Sum(211) _{15,1012} = 228 ²	.95 <mark>(211)</mark>

Space heating fuel (secondary), kWh/month

= {[(98)m x (201)] } x 100 ÷ (208)								
	<u> </u>							
(215)m= 0 0 0 0 0	0 0) 0	0	0	0	0		
		Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	_=	0	(21
Water heating								
Output from water heater (calculated above)							-	
209.79 184.94 193.96 172.03 166.56 1	146.69 140	.54 156.67	158.4	180.37	190.96	204.78		
Efficiency of water heater							80.3	(21
(217)m= 87.1 86.59 85.63 83.7 81.42	80.3 80	.3 80.3	80.3	83.94	86.32	87.24		(21
Fuel for water heating, kWh/month	-		-			-	-	
$(219)m = (64)m \times 100 \div (217)m$							1	
(219)m= 240.86 213.58 226.5 205.53 204.55 1	182.68 175		197.26	214.89	221.22	234.73		- 1.
		TOTA	al = Sum(2)				2511.96	(21
Annual totals				k	Wh/year	r	kWh/yea	r T
Space heating fuel used, main system 1							2284.95	
Water heating fuel used							2511.96	
Electricity for pumps, fans and electric keep-hot								
central heating pump:						30		(23
boiler with a fan-assisted flue						45		(23
Total electricity for the above, kWh/year								
		sum	of (230a).	(230g) =			75	(23
		sum	of (230a).	(230g) =		_	75 3 93.13	(23
Electricity for lighting	ns including			(230g) =				
	ns including			(230g) =				
Electricity for lighting	Energy) micro-CHF		Emiss	ion fac	tor	393.13 Emission	(23:
Electricity for lighting) micro-CHF			ion fac	tor	393.13	(23:
Electricity for lighting 12a. CO2 emissions – Individual heating system	Energy) micro-CHF		Emiss	ion fac 2/kWh	tor =	393.13 Emission	(23:
Electricity for lighting 12a. CO2 emissions – Individual heating system Space heating (main system 1)	Energy kWh/ye) micro-CHF		Emiss kg CO	ion fac 2/kWh		393.13 Emission kg CO2/ye	(23 s ear
Electricity for lighting 12a. CO2 emissions – Individual heating system Space heating (main system 1) Space heating (secondary)	Energy kWh/ye) micro-CHF		Emiss kg CO2	ion fac 2/kWh 16	=	393.13 Emission kg CO2/ye 493.55	(23 s ear (26 (26
Electricity for lighting 12a. CO2 emissions – Individual heating system Space heating (main system 1) Space heating (secondary) Water heating	Energy kWh/ye (211) x (215) x (219) x) micro-CHF		Emiss kg CO 0.2 0.5	ion fac 2/kWh 16	=	393.13 Emission kg CO2/ye 493.55 0	(23 s ear (26
Electricity for lighting 12a. CO2 emissions – Individual heating system Space heating (main system 1) Space heating (secondary) Water heating Space and water heating	Energy kWh/ye (211) x (215) x (219) x	9 micro-CHF 9 262) + (263) + (Emiss kg CO 0.2 0.5	ion fac 2/kWh 16 19	=	393.13 Emission kg CO2/ye 493.55 0 542.58	(23 sear (26 (26
Electricity for lighting	Energy kWh/ye (211) x (215) x (219) x (261) + (2	2 miero-CHF Y 2ar 262) + (263) + (Emiss kg CO2 0.2 0.5 0.2	ion fac 2/kWh 16 19 16	-	393.13 Emission kg CO2/ye 493.55 0 542.58 1036.13	(23 s ar (26 (26 (26

TER =

13.81 (273)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa Address:	re Ver			Versio	n: 1.0.4.23	
Address :	2 Bed Flat, 219-223					ah Junct	tion. LON	NDON		
1. Overall dwelling dimer				,		,	,			
Ground floor			Area		(1a) x		ight(m) 2.5	(2a) =	Volume(m ³ 192	3) (3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)) 7	76.8	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3c	d)+(3e)+	.(3n) =	192	(5)
2. Ventilation rate:										
Number of chimneys	main se heating h	econdary leating	/ · ·	other 0] = [total 0	x 4	40 =	m ³ per hou	(6a)
Number of open flues	0 +	0	+	0] = [0	x2	20 =	0	(6b)
Number of intermittent fan	s				, L	3	x 7	10 =	30	(7a)
Number of passive vents					Ē	0	x ·	10 =	0	(7b)
Number of flueless gas fire	es					0	X 4	40 =	0	(7c)
								Air ch	anges per ho	our
Infiltration due to chimney						30		÷ (5) =	0.16	(8)
<i>If a pressurisation test has be</i> Number of storeys in the Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	sent, use the value corres				•	uction			0	(11)
If suspended wooden flo	oor, enter 0.2 (unseal	ed) or 0.′	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente									0	(13)
Percentage of windows	and doors draught st	ripped		0.05 K0.0		0.01			0	(14)
Window infiltration				0.25 - [0.2			. (45)	·	0	(15)
Infiltration rate	EQ overegoed in out	io motros		(8) + (10) -		· · · ·		oroo	0	(16)
Air permeability value, of If based on air permeabilit	• •		•	•			invelope	alea	5	(17) (18)
Air permeability value applies	•					is being u	sed		0.41	(10)
Number of sides sheltered			0			Ū			1	(19)
Shelter factor				(20) = 1 - [0.075 x (1	9)] =			0.92	(20)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x (20) =				0.38	(21)
Infiltration rate modified fo	r monthly wind speed	1							L	
Jan Feb M	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22))m ÷ 4	r		·						
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltra	ation rat	e (allow	ing for sh	nelter an	nd wind s	speed) =	: (21a) x	(22a)m				_	
	0.48	0.47	0.46	0.41	0.4	0.36	0.36	0.35	0.38	0.4	0.42	0.44		
	<i>ate effec</i> echanica		-	rate for t	he appli	cable ca	se							(220)
				endix N, (2	3b) = (23;	a) x Emv (e	equation (N5)) othe	rwise (23h	(23a) = (23a)			0	(23a)
		• •	0 11	ciency in %	, ,	, (• •	<i>,,</i> .	,	(_000)			0	(23b) (23c)
			-	entilation	-					2h)m + (23h) 🗸 [1 – (23c)	-	(230)
(24a)m=		0			0]	(24a)
	balance	d mech	ı anical ve	I entilation	without	I heat red	L Coverv (I	1 MV) (24b	(22)	1 2b)m + (;	1 23b)		I	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
c) If	whole h	ouse ex	tract ver	ntilation of	or positiv	/e input v	ventilatio	on from o	outside	I		I	1	
,				then (24d	•	•				.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
,				ole hous		•				o -1				
	<u> </u>		<u> </u>)m = (22t		<u>``</u>	<u> </u>	1	<u> </u>	<u> </u>	0.50		1	(244)
(24d)m=	0.61	0.61	0.61	0.59	0.58	0.56	0.56	0.56	0.57	0.58	0.59	0.6		(24d)
	ctive air	change 0.61	rate - er 0.61	nter (24a) or (241 0.58	o) or (24	c) or (24 0.56	(d) in box	x (25)	0.58	0.59	0.6	1	(25)
(25)m=	0.01	0.01	0.01	0.59	0.56	0.56	0.56	-0.56	0.57	0.56	0.59	0.6		(23)
3. He	at l <mark>osse</mark>	s and he	eat loss	paramete	er:								_	
ELEN		Gros area		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/I		k-value		A X k kJ/K
Windo	ws Type		()			2.7		/[1/(1.4)+		3.58		10,111		(27)
	ws Type					3.6		/[1/(1.4)+		4.77	Ħ			(27)
	ws Type					7.2		/[1/(1.4)+		9.55	Ħ			(27)
	ws Type					4.94		/[1/(1.4)+		6.55	H			(27)
Walls		5		2.7		2.3		0.18		0.33				(29)
Walls		31.		3.6		27.9		0.18		5.02			\dashv	(29)
Walls		22.7				15.55							\dashv	(29)
Walls		15		4.94		10.06		0.18		2.8 1.81			\dashv	(29)
	rea of e			4.94				0.10		1.01	L			(31)
Party		lementa	,			74.25				0	r			
Party f						37.5	×	0	=	0			\dashv	(32)
						76.8					L		\dashv	(32a)
Party o	al wall **					76.8					l		\dashv	(32b)
		roofwind		footivowi	ndowilly	117		n farmula 1	11/1/11	(0) (0) (1)		norogrank		(32c)
			sides of i	effective wi nternal wal			ลเฮน นรที่ได้	g iomula l	/(// U -vall	<i>i⊖)</i> +0.04] a	is yiveri Ili	ραιαγιαρί	1 J.Z	
				normal mai	o una par									
Fabric			= S (A x		o ana par			(26)(30)) + (32) =				34.49) (33)

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

4 78 (36)

250

Indicative Value: Medium

(35)

if detail	s of therma	al bridging	are not kr	10wn (36) =	= 0.05 x (3	1)								_
Total f	abric he	at loss							(33) +	(36) =			39.27	(37)
Ventila	ation hea	at loss ca	alculated	monthl	y	-	-		(38)m	= 0.33 × (25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	38.95	38.67	38.39	37.09	36.85	35.72	35.72	35.51	36.15	36.85	37.34	37.86		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	78.23	77.94	77.67	76.37	76.12	74.99	74.99	74.78	75.43	76.12	76.62	77.13		
Heat I	oss para	Imeter (H	HLP), W	/m²K		•		•		Average = = (39)m ÷		12 /12=	76.37	(39)
(40)m=	1.02	1.01	1.01	0.99	0.99	0.98	0.98	0.97	0.98	0.99	1	1		
		1	1			1	1			Average =	Sum(40)₁	12 /12=	0.99	(40)
Numb	er of day	/s in mo	nth (Tab	le 1a)		-	-			-				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. W	ater hea	ting ene	rgy requ	irement:								kWh/ye	ear:	
													1	
		upancy,∣ o N – 1		1 - evn	(_0 0003		-130)2)] + 0.0)013 x (⁻	TFA -13		4		(42)
	A £ 13.		+ 1.70 ×	. [1 - exp	(-0.000	,43 x (11	A -13.3)2)] + 0.0		II A -13.	.3)			
								(25 x N)				.18		(43)
		-		usage by a r day (all w		-	-	to achieve	a water us	se target o	f			
notmoi														
11-4	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
				ach month								i		
(44)m=	100.3	96.66	93.01	89.36	85.71	82.07	82.07	85.71	89.36	93.01	96.66	100.3		-
Energy	content of	hot water	used - cai	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	0Tm / 3600		Tota <mark>l = Su</mark> hth (see Ta	· · ·		1094.21	(44)
(45)m=	148.75	130.09	134.25	117.04	112.3	96.91	89.8	103.05	104.28	121.52	132.65	144.05		
				•				•		Total = Su	m(45) ₁₁₂ =	=	1434.68	(45)
lf instar	taneous v	ater heati	ng at point	t of use (no	hot water	r storage),	enter 0 in	boxes (46,) to (61)	-	-			
(46)m=	22.31	19.51	20.14	17.56	16.85	14.54	13.47	15.46	15.64	18.23	19.9	21.61		(46)
	storage		includir		olor or M		otorogo	within or		aal		-	1	(47)
-		. ,					-	within sa	ame ves	501		0		(47)
	•	•		ank in dw ar (this in	•			(47) ombi boil	ore) onte	ər '()' in (47)			
	storage		not wate		iciuues i	nstantai					<i>H()</i>			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temp	erature f	actor fro	m Table	2b			• •					0		(49)
				, kWh/y∉	ear			(48) x (49)	=			0		(50)
-	-		-	cylinder l		or is not		. , . ,				0		(00)
Hot wa	ater stor	age loss	factor fi	rom Tabl	e 2 (kW	h/litre/da	ay)					0		(51)
	•	neating s		on 4.3										
		from Ta		Oh								0		(52)
		actor fro										0		(53)
-	-		-	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	5)									0		(55)

Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylind	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	50.96	44.49	47.4	44.07	43.68	40.47	41.82	43.68	44.07	47.4	47.67	50.96		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	(59)m + (61)m	Ì
(62)m=	199.71	174.58	181.64	161.11	155.98	137.38	131.62	146.72	148.34	168.92	180.32	195.01		(62)
Solar DI	-IW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)		-	-		
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter											
(64)m=	199.71	174.58	181.64	161.11	155.98	137.38	131.62	146.72	148.34	168.92	180.32	195.01		_
								Outp	out from w	ater heate	r (annual)₁	12	1981.33	(64)
Hea <mark>t g</mark>	ains fro	m water	heating	, kWh/m	onth 0.2	<mark>5 ´</mark> [0.85	× (45)m	+ (61)n	n] + 0.8 x	k [(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	62.2	54.38	56.49	49.93	48.26	42.34	40.31	45.18	45.69	52.26	56.02	60.64		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in t <mark>he</mark> o	dwelling	or hot w	rate <mark>r is f</mark> r	om com	<mark>mu</mark> nity h	eating	
5. In	ternal ga	ains (see	e Table 8	5 and 5a):									
Metab	olic gair	s (Table	5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97		(66)
Lightin	g gains	(calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m=	18.96	16.84	13.69	10.37	7.75	6.54	7.07	9.19	12.33	15.66	18.28	19.48		(67)
Applia	nces ga	ins (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5	_	_		
(68)m=	212.62	214.83	209.27	197.43	182.49	168.45	159.07	156.86	162.42	174.26	189.2	203.24		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5			_	
(69)m=	35	35	35	35	35	35	35	35	35	35	35	35		(69)
Pumps	s and fai	ns gains	(Table :	5a)									-	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losse	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97		(71)
Water	heating	gains (T	able 5)										-	
(72)m=	83.6	80.92	75.92	69.35	64.87	58.8	54.18	60.73	63.46	70.24	77.81	81.5		(72)
Total i	nternal	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m	-	
		guino -						1 C C	· · ·		· · · ·			
(73)m=	377.17	374.58	360.87	339.14	317.1	295.79	282.31	288.77	300.2	322.14	347.27	366.22		(73)

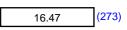
Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	3.6	x	11.28	x	0.63	x	0.7	=	12.41	(75)
Northeast 0.9x	0.77	x	3.6	x	22.97	x	0.63	x	0.7	=	25.27	(75)
Northeast 0.9x	0.77	x	3.6	x	41.38	x	0.63	x	0.7	=	45.53	(75)
Northeast 0.9x	0.77	x	3.6	x	67.96	x	0.63	x	0.7	=	74.77	(75)
Northeast 0.9x	0.77	x	3.6	x	91.35	x	0.63	x	0.7	=	100.5	(75)
Northeast 0.9x	0.77	x	3.6	x	97.38	x	0.63	x	0.7	=	107.14	(75)
Northeast 0.9x	0.77	x	3.6	x	91.1	x	0.63	x	0.7	=	100.23	(75)
Northeast 0.9x	0.77	x	3.6	x	72.63	x	0.63	x	0.7	=	79.9	(75)
Northeast 0.9x	0.77	x	3.6	x	50.42	x	0.63	x	0.7	=	55.47	(75)
Northeast 0.9x	0.77	x	3.6	x	28.07	x	0.63	x	0.7	=	30.88	(75)
Northeast 0.9x	0.77	x	3.6	x	14.2	x	0.63	x	0.7	=	15.62	(75)
Northeast 0.9x	0.77	x	3.6	x	9.21	x	0.63	x	0.7	=	10.14	(75)
Southwest0.9x	0.77	x	2.7	x	36.79]	0.63	x	0.7	=	30.36	(79)
Southwest0.9x	0.77	x	2.7	x	62.67]	0.63	x	0.7	=	51.72	(79)
Southwest0.9x	0.77	x	2.7	x	85.75]	0.63	x	0.7	=	70.76	(79)
Southwest0.9x	0.77	x	2.7	×	106.25		0.63	x	0.7	=	87.67	(79)
Southwest0.9x	0.77	x	2.7	x	119.01		0.63	x	0.7	=	98.2	(79)
Southwest0.9x	0.77	x	2.7	x	118.15		0.63	x	0.7	=	97.49	(79)
Southwest0.9x	0.77	x	2.7	x	113.91		0.63	x	0.7	=	93.99	(79)
Southwest0.9x	0.77	x	2.7	x	104.3 <mark>9</mark>]	0.63	x	0.7	=	86.14	(79)
Southwest0.9x	0.77	x	2.7	x	92.85		0.63	x	0.7	=	76.62	(79)
Southwest0.9x	0.77	x	2.7	x	69.27]	0.63	x	0.7	=	57.16	(79)
Southwest0.9x	0.77	x	2.7	x	44.07]	0.63	x	0.7	=	36.37	(79)
Southwest0.9x	0.77	x	2.7	x	31.49]	0.63	x	0.7	=	25.98	(79)
West 0.9x	0.77	x	4.94	x	19.64	x	0.63	x	0.7	=	29.65	(80)
West 0.9x	0.77	x	4.94	x	38.42	×	0.63	x	0.7	=	58	(80)
West 0.9x	0.77	x	4.94	x	63.27	x	0.63	x	0.7	=	95.53	(80)
West 0.9x	0.77	x	4.94	x	92.28	×	0.63	x	0.7	=	139.32	(80)
West 0.9x	0.77	x	4.94	x	113.09	×	0.63	x	0.7	=	170.74	(80)
West 0.9x	0.77	x	4.94	x	115.77	x	0.63	x	0.7	=	174.78	(80)
West 0.9x	0.77	x	4.94	x	110.22	x	0.63	x	0.7	=	166.4	(80)
West 0.9x	0.77	x	4.94	x	94.68	×	0.63	x	0.7	=	142.93	(80)
West 0.9x	0.77	x	4.94	x	73.59	×	0.63	x	0.7	=	111.1	(80)
West 0.9x	0.77	x	4.94	x	45.59	×	0.63	x	0.7	=	68.83	(80)
West 0.9x	0.77	x	4.94	x	24.49	x	0.63	x	0.7	=	36.97	(80)
West 0.9x		x	4.94	x	16.15	x	0.63	x	0.7	=	24.38	(80)
Northwest 0.9x		x	7.2	x	11.28	×	0.63	x	0.7	=	24.83	(81)
Northwest 0.9x		x	7.2	x	22.97	×	0.63	x	0.7	=	50.54	(81)
Northwest 0.9x	0.77	x	7.2	x	41.38	×	0.63	x	0.7	=	91.05	(81)

Northwest						1 F		— –				-
Northwest 0.9x 0.77	×	7.2		×	67.96		0.63		0.7	=	149.53	(81)
Northwest 0.9x 0.77	×	7.2		x	91.35	Ĭ×Ĺ	0.63		0.7	=	201	(81)
Northwest 0.9x 0.77	×	7.2		x	97.38	X	0.63	× [0.7	=	214.29	(81)
Northwest 0.9x 0.77	×	7.2		×	91.1	×	0.63	× [0.7	=	200.46	(81)
Northwest 0.9x 0.77	x	7.2		x	72.63	×	0.63	×	0.7	=	159.81	(81)
Northwest 0.9x 0.77	×	7.2		× !	50.42	×	0.63	×	0.7	=	110.95	(81)
Northwest 0.9x 0.77	x	7.2		x	28.07] × [0.63	x	0.7	=	61.76	(81)
Northwest 0.9x 0.77	x	7.2		x	14.2] × [0.63	x	0.7	=	31.24	(81)
Northwest 0.9x 0.77	x	7.2		x	9.21] × [0.63	x	0.7	=	20.28	(81)
Solar gains in watts, calc	ulated	for each	month			(83)m	= Sum(74)m	(82)m				
(83)m= 97.25 185.52 3	302.86	451.29	570.44	593.7	561.08	468.	79 354.14	218.62	120.2	80.78		(83)
Total gains – internal and	d solar	(84)m = ((73)m +	+ (83)m	, watts			i			L	
(84)m= 474.42 560.1 6	63.73	790.43	887.54	889.49	843.39	757.	55 654.34	540.76	467.47	446.99		(84)
7. Mean internal temper	rature (heating s	season))								
Temperature during hea	ating pe	eriods in t	the livin	ng area	from Tal	ole 9,	Th1 (°C)				21	(85)
Utilisation factor for gair	ns for li	ving area	a, h1,m	(see Ta	able 9a)							
Jan Feb	Mar	Apr	May	Jun	Jul	Au	ig Sep	Oct	Nov	Dec		
(86)m= 1 0.99	0.98	0.91	0.74	0.53	0.39	0.4	5 0.74	0.96	0.99	1		(86)
Mean internal temperat	ure in li	iving area	a T1 (fo	ollow ste	eps 3 to 7	, 7 in Ta	able 9c)			•		
(87)m= 19.96 20.12	20.4		20.94	20.99	21	21		20.66	20.25	19.93		(87)
				-h								
Temperature during heat (88)m= 20.07 20.07	20.07		20.09	20.1	20.1	20.1		20.09	20.09	20.08		(88)
							20.1	20.00	20.00	20.00		(00)
Utilisation factor for gain	î		<u> </u>		1	r ´						(00)
(89)m= 1 0.99	0.97	0.88	0.68	0.46	0.31	0.37	7 0.66	0.94	0.99	1		(89)
Mean internal temperat	ure in t	he rest of	f dwelli	ng T2 (f	ollow ste	eps 3	to 7 in Tab	le 9c)		-		
(90)m= 18.67 18.92	19.32	19.8	20.03	20.1	20.1	20.7		19.7	19.11	18.65		(90)
								fLA = Livir	ng area ÷ (4) =	0.34	(91)
Mean internal temperat	ure (for	the who	le dwel	ling) = f	LA × T1	+ (1 -	- fLA) × T2					
	19.69		20.34	20.4	20.41	20.4		20.03	19.5	19.09		(92)
Apply adjustment to the	mean	internal t	empera	ature fro	m Table	4e, v	where appr	opriate	•			
(93)m= 19.11 19.33	19.69	20.12	20.34	20.4	20.41	20.4	1 20.37	20.03	19.5	19.09		(93)
8. Space heating requir	ement											
Set Ti to the mean inter		•		ed at st	ep 11 of	Table	e 9b, so tha	at Ti,m=((76)m an	d re-calc	culate	
the utilisation factor for	<u> </u>				1	<u> </u>			1			
Jan Feb	Mar	Apr	May	Jun	Jul	Au	ig Sep	Oct	Nov	Dec		
Utilisation factor for gain (94)m= $\begin{bmatrix} 1 & 0.99 \end{bmatrix}$			0.7	0.40	0.24	0.20		0.94	0.00	1		(94)
(94)m= 1 0.99 Useful gains, hmGm , V	0.97	0.88	0.7	0.49	0.34	0.39	9 0.69	0.94	0.99	1		(34)
	v = (94 641.71	<u>, , ,</u>	621.82	431.55	285.3	299.0	01 449.73	509.2	463.08	445.62		(95)
Monthly average extern						L_00.		1 300.2	1.00.00		l	()
(96)m= 4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.4	4 14.1	10.6	7.1	4.2		(96)
Heat loss rate for mean									I	I	l	
	024.47	<u> </u>	657.88	435.25	285.68	299.8		717.61	949.8	1148.25		(97)
			-			L					I	

						En	ergy			Emiss	ion fac	tor	Emissions	6
12a. C	O2 em	issions ·	– Individ	lual heat	ing syste	ems inclu	uding mi	cro-CHP						
Electrici	ity for li	ghting											334.76	(232)
	-		above,	kWh/yea	ır			sum	of (230a).	(230g) =			75	(231)
			sted flue									45		(230e)
		g pump										30		(230c)
		•		electric	keep-ho	t							I	
	-	fuel use											2355.22	
•	0			system	1								2514.99	
Annual		f	ad maain	o voto m	4					k	Wh/year		kWh/yea	r J
								Tota	I = Sum(2 ⁻	19a) ₁₁₂ =			2355.22	(219)
	= (64)	•) ÷ (217) 210.77		191.06	171.08	163.91	182.72	184.74	199.11	207.99	223.09		_
i í L			kWh/m		01.04	00.5	00.5	00.0	00.0	04.04	00.7	07.41		(217)
г	87.31	ater hea 86.98	86.18	84.22	81.64	80.3	80.3	80.3	80.3	84.84	86.7	87.41	80.3	(217)
L			181.64	161.11	155.98	137.38	131.62	146.72	148.34	168.92	180.32	195.01	00.0	(216)
	from w			ulated a		127.29	121 62	146 70	149.24	169.02	190.22	105.01		
								Tota	l (kWh/yea	ar) =Sum(2	2 15) _{15,1012}		0	(215)
		-	00 ÷ (20		0	0	0	0	0	0	0	0		
Space	heatin	g fuel (s	econdar	y), kWh/	month									
L								-	-	ar) =Sum(2			2514.99	(211)
· · ·	= {[(98 546.65)m x (20 410.59	304.9	100 ÷ (20	28.72	0	0	0	0	166.02	375.21	559.7		(211)
L						0	0	0	0	133.00	330.44	322.10		(014)
· -	heatin 510.57	g require 383.49	ement (0 284.78	alculate	d above 26.82)	0	0	0	155.06	350.44	522.76		
Ĺ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Efficier	ncy of s	seconda	ry/suppl	ementar	y heatin	g system	n, %						0	(208)
				ting syste									93.4	(206)
Fractic	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Fractic	on of sp	ace hea	at from n	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Space Fractic		-	at from s	econdar	y/supple	mentary	v system						0	(201)
9a. Ene	rgy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Space	heatin	g require	ement in	n kWh/m²	²/year						,		30.59	(99)
(50)11-	010.07	505.45	204.70	110.00	20.02	0	0		-	(kWh/year			2349	(98)
· -	neatin 510.57	383.49	284.78	115.06	26.82		n = 0.02	$\frac{24 \times [(97)]}{0}$)m – (95 0	155.06	350.44	522.76		

Space heating requirement for each month k///h/month = 0.024 x [(97)m = (95)m] x (41)m


kWh/year

Emission factor kg CO2/kWh

Emissions kg CO2/year

Space heating (main system 1)	(211) x	0.216	=	543.24	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	508.73	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1051.96	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	173.74	(268)
Total CO2, kg/year	sum	of (265)(271) =		1264.63	(272)

TER =

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 20	Versio	n: 1.0.4.23							
Address :	1 Bed Flat, 219-22			Address:		nh lunct	tion I ON			
1. Overall dwelling dime		5 Columan		ne, Loug	μηροιοαί	gri Jurici				
Ground floor			Area 5		(1a) x		ight(m) 2.5	(2a) =	Volume(m 129.25	3) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1	e)+(1n)	5	51.7	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3c	l)+(3e)+	.(3n) =	129.25	(5)
2. Ventilation rate:										
Number of chimneys		secondary heating	/] + [0 0] = [total 0		40 =	m³ per hou	ır (6a)
Number of open flues	0 +	0	+	0	=	0	x 2	20 =	0	(6b)
Number of intermittent fai	ns					2	x ^	10 =	20	(7a)
Number of passive vents					Γ	0	x ´	10 =	0	(7b)
Number of flueless gas fi	res				Ē	0	X 4	40 =	0	(7c)
Infiltration due to chimney	vs, flues and fans = (6a)+(6b)+(7a	a)+(7b)+(7	7c) =	Г	20		Air ch ÷ (5) =	anges per he	our (8)
If a pressurisation test has be Number of storeys in the Additional infiltration Structural infiltration: 0. if both types of wall are pr deducting areas of opening	ne dw <mark>elling</mark> (ns) 25 for steel or timber resent, use the value corre	frame or (0.35 for	masonr	y constr			-1]x0.1 =	0 0 0	(9) (10) (11)
If suspended wooden f	- · · ·	aled) or 0.1	l (seale	d), else	enter 0			[0	(12)
If no draught lobby, ent		,	,	,.					0	(13)
Percentage of windows	s and doors draught s	stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) ·	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,			•		•	etre of e	envelope	area	5	(17)
If based on air permeabili	•								0.4	(18)
Air permeability value applies Number of sides sheltere		as been done	e or a deg	iree air pei	meability	is being u	sed	I		
Shelter factor	u			(20) = 1 - [0.075 x (1	9)] =			3 0.78	(19) (20)
Infiltration rate incorporati	ing shelter factor			(21) = (18)	x (20) =			l	0.31	(21)
Infiltration rate modified for	-	ed						Į	0.01	
	Mar Apr May	1 1	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	eed from Table 7									
r r	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	2)m ÷ 4	<u> </u>								
(22a)m= 1.27 1.25	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter an	d wind s	peed) =	(21a) x	(22a)m					
	0.4	0.39	0.38	0.35	0.34	0.3	0.3	0.29	0.31	0.34	0.35	0.37]	
		c <i>tive air</i> al ventila	-	rate for ti	he applic	cable ca	se						0	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (N	N5)) , othe	rwise (23b) = (23a)			0	(23b)
lf bala	anced with	n heat reco	overy: effic	iency in %	allowing for	or in-use f	actor (from	n Table 4h) =				0	(23c)
a) If	balance	d mech	anical ve	entilation	with hea	at recove	ery (MVI	HR) (24a	a)m = (22	2b)m + (23b) × [′	1 – (23c)	÷ 100]	`
(24a)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	d mech	anical ve	entilation	without	heat rec	overy (N	/IV) (24b)m = (22	2b)m + (2	23b)		•	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24b)
,				ntilation c	•	•								
1	· ,	1	r í	then (240	, , 			r i	ŕ	r È	ŕ	1	1	
(24c)m=		0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous $m = (22t)$		•				0.51				
(24d)m=	, <i>,</i>	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0.56	0.56	0.57	1	(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b) or (24	c) or (24	d) in boy	(25)				1	
(25)m=	0.58	0.58	0.57	0.56	0.56	0.54	0.54	0.54	0.55	0 <mark>.56</mark>	0.56	0.57		(25)
2 40	atlassa	c and h		paramete									,	
ELEN		S and he Gros		Openin		Net Ar	ea	U-valu		AXU		k-value		AXk
		area		m		A ,r		W/m2		(W/I	K)	kJ/m ² ·l		kJ/K
Windov	ws Type	e 1				10.63	x1,	/[1/(1.4)+	0.04] =	14.09				(27)
Windov	ws Type	2				2.3	x1,	/[1/(1.4)+	0.04] =	3.05				(27)
Wall <mark>s</mark> 7	Гуре1	29	,	10.63	3	18.37	×	0.18		3.31				(29)
Walls 7	Гуре2	5		2.3		2.7	×	0.18] = [0.49				(29)
Walls 7	Гуре3	18	3	0		18	x	0.18	= [3.24				(29)
Total a	rea of e	lements	, m²			52								(31)
Party v	vall					44.25	5 x	0	=	0				(32)
Party f	loor					51.7					[7	(32a)
Party c	eiling					51.7					Γ		\exists	(32b)
Interna	l wall **					77					Γ		\dashv	(32c)
				effective wil nternal wall			ated using	formula 1	/[(1/U-valu	ie)+0.04] a	∎ as given in	paragraph	n 3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				24.1	7 (33)
Heat c	apacity	Cm = S	(A x k)						((28)	.(30) + (32	2) + (32a).	(32e) =	1409)2 (34)
Therma	al mass	parame	eter (TMI	⊃ = Cm ÷	TFA) in	⊨kJ/m²K			Indica	tive Value	: Medium		250	(35)
	•		ere the de tailed calc	tails of the ulation.	constructi	on are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
Therma	al bridg	es : S (L	x Y) cal	culated u	ising Ap	pendix ł	<						5.31	(36)
			are not kr	own (36) =	: 0.05 x (3	1)				<i>(</i>)				
	abric he		-11-4	1	_					(36) =	05) (5)		29.4	8 (37)
ventila		i	i	d monthly		1	11	Δ		· · · · ·	25)m x (5)	i _	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	J	

(38)m=	24.74	24.6	24.48	23.87	23.75	23.22	23.22	23.12	23.42	23.75	23.98	24.22		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	54.22	54.09	53.96	53.35	53.24	52.7	52.7	52.61	52.91	53.24	53.47	53.71		
Heat In	nse nara	meter (l	HLP), W	/m²K						Average = = (39)m ÷	Sum(39) ₁	12 /12=	53.35	(39)
(40)m=	1.05	1.05	1.04	1.03	1.03	1.02	1.02	1.02	1.02	1.03	1.03	1.04		
			I						<u> </u>	Average =	Sum(40)1	12 /12=	1.03	(40)
Numbe	er of day	/s in mo	nth (Tab	le 1a)	i	i	i						I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(44)
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4 367														
4. Wa	iter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
		upancy,		14	(0.000	40 · · /TI	- 40.0		040/			.74		(42)
	A > 13.9 A £ 13.9	-	+1.76 x	[1 - exp	(-0.0003	649 X (11	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	.9)			
				ge in litre								i.53		(43)
		-		usage by . r day (all w		-	-	to achieve	a water us	se target o	t			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	L	
Hot wate	er usage i	n litres pei		ach month			Table 1c x	<u> </u>						
(44)m=	<mark>8</mark> 3.08	80.06	77.04	74.02	71	67.98	67. <mark>98</mark>	71	74.02	77.04	80.06	83.08		
Enorm	pontont of	bot water	unod on	culated mo	opthly - A	100 v Vd r		Tm (2600			m(44) ₁₁₂ =		906.36	(44)
	123.21							-						
(45)m=	123.21	107.76	111.2	96.95	93.02	80.27	74.38	85.36	86.37	100.66 Total = Su	109.88 m(45) ₁₁₂ =	119.32	1188.38	(45)
lf instant	taneous w	vater heati	ng at point	of use (no	o hot water	^r storage),	enter 0 in	boxes (46						`
(46)m=	18.48	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
	storage		includir	ng any so	alar or M		storage	within c		دما		0	l	(47)
-				ink in dw			-			301		0		(47)
		-		er (this in	-			. ,	ers) ente	er '0' in (47)			
	storage					<i></i>	<i>.</i>						I	
				oss facto	or is kno	wn (kvvr	n/day):					0		(48)
-			m Table	∈∠b e, kWh/ye	aar			(48) x (49)	\ _			0		(49)
			•	cylinder l		or is not		(40) × (40)	/ –			0		(50)
		-		om Tabl	e 2 (kW	h/litre/da	ıy)					0		(51)
		ieating s from Ta	ee secti ble 2a	on 4.3								0	l	(52)
			m Table	2b								0 0		(52)
Energy	/ lost fro	m watei	storage	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month	-	-	((56)m = (55) × (41)	m	-			
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
-	er contains	s dedicate	d solar sto	rage, (57)i	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	om Append	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circuit	t loss (ar	nnual) fro	om Table	e 3							0		(58)
Primary circuit (modified by						. ,	. ,		r thermo	stat)			
(59)m= 0		0	0	0				0	0	0	0		(59)
Combi loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m						
(61)m= 42.34	36.85	39.26	36.5	36.18	33.52	34.64	36.18	36.5	39.26	39.48	42.34		(61)
Total heat req	uired for	water he	eating ca	alculated	for eac	h month	(62)m =	0.85 × 0	(45)m +	(46)m +	(57)m +	(59)m + (6 ²	1)m
(62)m= 165.55	144.61	150.46	133.45	129.2	113.79	109.02	121.54	122.88	139.92	149.36	161.66		(62)
Solar DHW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	I lines if	FGHRS	and/or \	WHRS	applies	, see Ap	pendix (G)	i	i	i		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater hea	ter											
(64)m= 165.55	144.61	150.46	133.45	129.2	113.79	109.02	121.54	122.88	139.92	149.36	161.66		
							Outp	out from w	ater heate	r (annual)₁	12	1641.44	(64)
Heat gains fro	m water	heating,	kWh/m	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 51.55	45.04	46.79	41.36	39.97	35.07	33.39	37.43	37.85	43.28	46.41	50.26		(65)
in <mark>clude (57</mark>)	m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	Table 5	5 and 5a):									
Met <mark>abolic</mark> gair	ns (Table	e 5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 87.01	87.01	87.01	87. <mark>01</mark>	87.01	87.01	8 <mark>7</mark> .01	87.01	87.01	8 <mark>7.01</mark>	87.01	87.01		(66)
Ligh <mark>ting g</mark> ains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see [·]	Table 5			-		
(67)m= 13.52	12.01	9.77	7.39	5.53	4.67	5.04	6.55	8.8	11.17	13.03	13.9		(67)
Appliances ga	ins (calc	ulated in	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				I
(68)m= 151.65	153.22	149.26	140.81	130.16	120.14	113.45	111.88	115.84	124.28	134.94	144.96		(68)
Cooking gains	(calcula	ted in A	ppendix	L, equat	tion L15	or L15a)	, also se	ee Table	5				
(69)m= 31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7		(69)
Pumps and fa	ns gains	(Table 5	5a)										
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. ev	, aporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m= -69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61		(71)
Water heating	gains (1	able 5)							1				
(72)m= 69.29	67.03	62.89	57.44	53.73	48.71	44.88	50.3	52.56	58.18	64.45	67.55		(72)
Total internal	aains =	! :	I	1	(66)	ı m + (67)m	ı + (68)m -	I + (69)m + ∣	ı (70)m + (7	1)m + (72)	m		
(73)m= 286.56	284.36	274.01	257.75	241.52	225.62	215.48	220.84	229.3	245.73	264.53	278.51		(73)
6. Solar gain	s:	1		1	1	1	1	1	1				
Solar gains are		using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	onvert to th	ne applicat	le orientat	ion.		
			A					-				Caina	

Orientation:	Access Facto Table 6d	r	Area m²	Flux Table 6a			g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	2.3	x	11.28	x	0.63	x	0.7	=	7.93	(75)
Northeast 0.9x	0.77	x	2.3	x	22.97	×	0.63	×	0.7	=	16.14	(75)

			-		י ר					[—]
Northeast 0.9x 0.77	×	2.3	×	41.38		0.63		0.7	=	29.09	(75)
Northeast 0.9x 0.77	×	2.3	×	67.96	×	0.63		0.7	=	47.77	(75)
Northeast 0.9x 0.77	X	2.3	×	91.35	X	0.63		0.7	=	64.21	(75)
Northeast 0.9x 0.77	X	2.3	×	97.38	×	0.63	_ × [0.7	=	68.45	(75)
Northeast 0.9x 0.77	x	2.3	x	91.1	×	0.63	×	0.7	=	64.04	(75)
Northeast 0.9x 0.77	X	2.3	x	72.63	×	0.63	x	0.7	=	51.05	(75)
Northeast 0.9x 0.77	X	2.3	x	50.42	×	0.63	x	0.7	=	35.44	(75)
Northeast 0.9x 0.77	x	2.3	x	28.07	×	0.63	×	0.7	=	19.73	(75)
Northeast 0.9x 0.77	x	2.3	x	14.2	x	0.63	×	0.7	=	9.98	(75)
Northeast 0.9x 0.77	x	2.3	x	9.21	x	0.63	×	0.7	=	6.48	(75)
Southwest _{0.9x} 0.77	x	10.63	x	36.79] [0.63	x	0.7	=	119.53	(79)
Southwest _{0.9x} 0.77	x	10.63	x	62.67] [0.63	x	0.7	=	203.61	(79)
Southwest _{0.9x} 0.77	x	10.63	x	85.75] [0.63	×	0.7	=	278.58	(79)
Southwest _{0.9x} 0.77	x	10.63	x	106.25] [0.63	×	0.7	=	345.18	(79)
Southwest _{0.9x} 0.77	x	10.63	x	119.01] [0.63	×	0.7	=	386.63	(79)
Southwest _{0.9x} 0.77	x	10.63	x	118.15	ĪĪ	0.63	×	0.7	=	383.83	(79)
Southwest _{0.9x} 0.77	x	10.63	x	113.91	Ì ſ	0.63	×	0.7	=	370.05	(79)
Southwest0.9x 0.77	x	10.63	X	104.39		0.63	x	0.7	=	339.13	(79)
Southwest0.9x 0.77	×	10.63	x	92.85	i i	0.63	x	0.7		3 <mark>01.64</mark>	(79)
Southwest _{0.9x} 0.77	x	10.63	x	69.27	i /i	0.63	x	0.7	=	2 <mark>25.03</mark>	(79)
Southwest0.9x 0.77	x	10.63] x	44.07	i i	0.63	×	0.7	=	143.17	(79)
Southwest _{0.9x} 0.77	×	10.63	T x	31.49	í í	0.63	×	0.7	-	102.29	(79)
			-								
Solar gains in watts, ca	alculated	for each mor	nth		(83)m	= Sum(74)m .	<mark>(8</mark> 2)m				
(83)m= 127.46 219.75	307.67	392.94 450.8	33 4	52.28 434.09	390.	18 337.09	244.76	153.15	108.77		(83)
Total gains – internal a	ind solar	(84)m = (73)	m + (83)m , watts						-	
(84)m= 414.02 504.11	581.68	650.7 692.3	35 (677.9 649.57	611.	02 566.39	490.49	417.68	387.28		(84)
7. Mean internal temp	erature	(heating seas	on)								
Temperature during h	leating p	eriods in the l	iving	area from Ta	ble 9,	Th1 (°C)				21	(85)
Utilisation factor for g	ains for I	iving area, h1	,m (s	ee Table 9a)							
Jan Feb	Mar	Apr Ma	iy 🗌	Jun Jul	Αι	ıg Sep	Oct	Nov	Dec		
(86)m= 0.99 0.98	0.94	0.84 0.68	3	0.49 0.36	0.3	9 0.62	0.89	0.98	0.99		(86)
Mean internal temper	ature in	living area T1	(follo	ow steps 3 to ⁻	7 in T	able 9c)		-			
(87)m= 20.08 20.3	20.56	20.82 20.9	<u> </u>	20.99 21	21	<u>′</u>	20.78	20.38	20.04		(87)
Temperature during h		eriode in rest	of dv	velling from Tr	ahla C	 		1		1	
(88)m= 20.04 20.04	20.05	20.06 20.0	- 1	20.07 20.07	20.0		20.06	20.05	20.05		(88)
										I	× /
	. ,										
Utilisation factor for g			<u> </u>	i	т <u>́</u>	2 0.55	0.96	0.07	0.00	1	(80)
(89)m= 0.99 0.97	0.92	0.81 0.62	2	0.42 0.28	0.3		0.86	0.97	0.99		(89)
(89)m= 0.99 0.97 Mean internal temper	0.92 ature in t	0.81 0.62 the rest of dw	elling	0.42 0.28 T2 (follow ste	0.3 eps 3	to 7 in Tabl	e 9c)	1]	
(89)m= 0.99 0.97	0.92	0.81 0.62	elling	0.42 0.28	0.3	to 7 in Tabl	e 9c) 19.83	0.97 19.28 ng area ÷ (4	18.78	0.51	(89) (90) (91)

		مارين مرما فرم		()	A T4	. (4 4						
Mean internal tem (92)m= 19.47 19.7	`	20.35	20.49	11ng) = 1 20.53	LA × 11 20.54	+ (1 – TL 20.54	A) × 12 20.52	20.31	19.84	19.42		(92)
Apply adjustment									19.04	19.42		(32)
(93)m= 19.47 19.7		20.35	20.49	20.53	20.54	20.54	20.52	20.31	19.84	19.42		(93)
8. Space heating r		1		20100	2010 1	2010 1		20101				
Set Ti to the mean			re obtain	ed at ste	ep 11 of	Table 9	o, so tha	t Ti.m=(76)m an	d re-calo	ulate	
the utilisation facto		•			ор с .			, (
Jan Fe	b Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisation factor for	r gains, hn	n:								-		
(94)m= 0.99 0.9	0.92	0.82	0.65	0.46	0.32	0.36	0.58	0.87	0.97	0.99		(94)
Useful gains, hmG	`	rí - `	r i		·		· · · · · ·		·		l	
(95)m= 408.96 488.		532.16	448.92	310.45	207.36	217.31	331.27	425.53	406.09	383.79		(95)
Monthly average e		r –										(00)
(96)m= 4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat loss rate for r		610.76	468.05		=[(39)m : 207.62	x [(93)m 217.77	<u> </u>] 517.18	681.01	017.46		(97)
(97)m= 822.57 802. Space heating req				312.78			339.64			817.46		(37)
(98)m= 307.73 211.		56.59	14.24	0	11 = 0.02	4 X [(97	0	68.19	197.94	322.65		
	144.01	00.00	14.24	Ū	Ŭ	-	l per year				1322.71	(98)
							ii per year	(KVVII/yeai) = 0um(9	0)15,912 -		
Space heating req	urement ir	n kvvh/m·	/year								25.58	(99)
9a. Energy requirer	ients – Ind	lividu <mark>al h</mark>	eating sy	/stems i	ncluding	micro-C	HP)					
Space heating:			1									
Fraction of space I				mentary							0	(201)
Fraction of space I	neat from r	nain syst	com(c)				(004)					
							– (201) =				1	(202)
Fraction of total he	ating from						- (201) = 02) × [1 -	(203)] =			1	(202)
Fraction of total he Efficiency of main		main sys	stem 1					(203)] =				
	space hear	main syste	stem 1 em 1	g system				(203)] =			1	(204)
Efficiency of main	space hear dary/supp	main syste	stem 1 em 1	g system Jun				(203)] = Oct	Nov	Dec	1 93.4	(204) (206) (208)
Efficiency of main Efficiency of secor	space hear dary/supp b Mar	main syste ting syste lementar	stem 1 em 1 y heating May	Jun	n, %	(204) = (2	02) × [1 –		Nov	Dec	1 93.4 0	(204) (206) (208)
Efficiency of main Efficiency of secor Jan Fe	space hear dary/supp b Mar uirement (d	main syste ting syste lementar	stem 1 em 1 y heating May	Jun	n, %	(204) = (2	02) × [1 –		Nov 197.94	Dec 322.65	1 93.4 0	(204) (206) (208)
Efficiency of main Efficiency of secor Jan Fe Space heating req	space hear dary/suppl b Mar uirement (0 06 144.31	main system lementar Apr calculate 56.59	stem 1 em 1 y heating May d above) 14.24	Jun	n, % Jul	(204) = (2 Aug	02) × [1 – Sep	Oct	I		1 93.4 0	(204) (206) (208)
Efficiency of main Efficiency of secor Jan Fe Space heating req 307.73 211.	space hear dary/supp b Mar uirement (o 06 144.31 (204)] } x 1	main system lementar Apr calculate 56.59	stem 1 em 1 y heating May d above) 14.24	Jun	n, % Jul	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.19 73.01	197.94 211.93	322.65 345.45	1 93.4 0	(204) (206) (208)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x	space hear dary/supp b Mar uirement (o 06 144.31 (204)] } x 1	main system lementar Apr calculate 56.59	stem 1 em 1 y heating May d above) 14.24 06)	Jun 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 – Sep 0	Oct 68.19 73.01	197.94 211.93	322.65 345.45	1 93.4 0	(204) (206) (208)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x	space heat dary/supp b Mar uirement (0 06 144.31 (204)] } x 97 154.51	main system lementar Apr calculate 56.59 100 ÷ (20 60.59	stem 1 em 1 y heating d above) 14.24 06) 15.24	Jun 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.19 73.01	197.94 211.93	322.65 345.45	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] }	space heat dary/supple b Mar uirement (model 06 144.31 (204)] } x 1 07 154.51 (secondation) (secondation)	main system lementar Apr calculate 56.59 100 ÷ (20 60.59	stem 1 em 1 y heating d above) 14.24 06) 15.24	Jun 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.19 73.01	197.94 211.93	322.65 345.45	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue	space heat dary/supple b Mar uirement (model 06 144.31 (204)] } x 1 07 154.51 (secondation) (secondation)	main system lementar Apr calculate 56.59 100 ÷ (20 60.59	stem 1 em 1 y heating d above) 14.24 06) 15.24	Jun 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.19 73.01 ar) =Sum(2 0	197.94 211.93 211) _{15.1012} 0	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] }	space heat dary/supple b Mar uirement (0 06 144.31 (204)] } x 97 154.51 (secondate x 100 ÷ (20)	main system lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 28)	stem 1 em 1 y heating d above) 14.24 06) 15.24	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.19 73.01 ar) =Sum(2 0	197.94 211.93 211) _{15.1012} 0	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m= 0 0 Water heating	space heat dary/supple b Mar uirement (d) 06 144.31 (204)] } x 07 154.51 (secondard) x 100 ÷ (20 0	main systementar lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 28) 0	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 0 I (kWh/yea	Oct 68.19 73.01 ar) =Sum(2 0	197.94 211.93 211) _{15.1012} 0	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)]} (215)m= 0 0 Water heating Output from water h	space heat dary/supple b Mar uirement (0) 06 144.31 (204)] } x 97 154.51 (secondation in the secondation in the secondati	main system lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 28) 0	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0	0 0	n, % Jul 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 Sep 0 0 I (kWh/yea 0 I (kWh/yea	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2)	197.94 211.93 211) _{15,1012} 0 215) _{15,1012}	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m = 0 0 Water heating Output from water h 165.55 144.	space heat dary/supple b Mar uirement (0) 06 144.31 (204)] } x 7 07 154.51 (secondate x 100 ÷ (20) 0 eater (calc 01 150.46	main systementar lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 28) 0	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 0 I (kWh/yea	Oct 68.19 73.01 ar) =Sum(2 0	197.94 211.93 211) _{15.1012} 0	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m= 0 0 Water heating Output from water h 165.55 144. Efficiency of water h	space heat dary/supple b Mar uirement (0 06 144.31 (204)] } x 97 154.51 (secondat x 100 ÷ (20 0 eater (calc 31 150.46 neater	main system lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 08) 0 culated a 133.45	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0 129.2	Jun 0 0 0 113.79	n, % Jul 0 0	(204) = (2 Aug 0 Tota 0 Tota 121.54	02) × [1- Sep 0 0 I (kWh/yea 122.88	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2) 139.92	197.94 211.93 211) _{15,1012} 0 215) _{15,1012} 149.36	322.65 345.45 = 0 =	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m= 0 0 Water heating Output from water h 165.55 144. Efficiency of water h (217)m= 86.59 86	space heat dary/supple b Mar uirement ($\frac{1}{204}$)] } x $\frac{1}{204}$)] } x $\frac{1}{204}$)] } x $\frac{1}{204}$)] } x $\frac{1}{204}$)] } x $\frac{1}{204}$)] } x $\frac{1}{204}$)] $\frac{1}{204}$)] $\frac{1}{204}$)] } x $\frac{1}{204}$)] \frac{1}{204})] $\frac{1}{204}$)] \frac{1}{204})] \frac{1}{204}	main system Iementar Apr calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 0 culated a 133.45 83.06	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0	0 0	n, % Jul 0	(204) = (2 Aug 0 Tota 0 Tota	02) × [1 Sep 0 0 I (kWh/yea 0 I (kWh/yea	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2)	197.94 211.93 211) _{15,1012} 0 215) _{15,1012}	322.65 345.45 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)]} (215)m= 0 0 Water heating Output from water h 165.55 144. Efficiency of water h (217)m= 86.59 86 Fuel for water heating	space heat dary/supple b Mar uirement (d) 06 144.31 (204)] } x 97 154.51 (secondant x 100 ÷ (20 0 eater (calc 01 150.46 neater 84.95 ng, kWh/m	main systementar Apr calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 08 0 culated a 133.45 83.06 onth	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0 129.2	Jun 0 0 0 113.79	n, % Jul 0 0	(204) = (2 Aug 0 Tota 0 Tota 121.54	02) × [1- Sep 0 0 I (kWh/yea 122.88	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2) 139.92	197.94 211.93 211) _{15,1012} 0 215) _{15,1012} 149.36	322.65 345.45 = 0 =	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m= 0 0 Water heating Output from water h 165.55 144. Efficiency of water h (217)m= 86.59 86	space heat dary/supp b Mar uirement (0 06 144.31 (204)] } x 7 154.51 (secondat x 100 ÷ (20 0 eater (calo 31 150.46 reater 84.95 ng, kWh/m 100 ÷ (217	main systementar Apr calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 08 0 culated a 133.45 83.06 onth	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0 129.2	Jun 0 0 0 113.79	n, % Jul 0 0	(204) = (2 Aug 0 Tota 0 Tota 121.54	02) × [1- Sep 0 0 I (kWh/yea 122.88	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2) 139.92	197.94 211.93 211) _{15,1012} 0 215) _{15,1012} 149.36	322.65 345.45 = 0 =	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Efficiency of main Efficiency of secon Jan Fe Space heating req 307.73 211. (211)m = {[(98)m x 329.47 225. Space heating fue = {[(98)m x (201)] } (215)m= 0 0 Water heating Output from water h 165.55 144. Efficiency of water h (217)m= 86.59 86 Fuel for water heating (219)m = (64)m x	space heat dary/supp b Mar uirement (0 06 144.31 (204)] } x 7 154.51 (secondat x 100 ÷ (20 0 eater (calo 31 150.46 reater 84.95 ng, kWh/m 100 ÷ (217	main system lementar calculate 56.59 100 ÷ (20 60.59 ry), kWh/ 08) 0 culated a 133.45 83.06 onth)m	stem 1 em 1 y heating d above) 14.24 06) 15.24 (month 0 129.2 81.2	Jun 0 0 0 113.79 80.3	n, % Jul 0 0 109.02 80.3	(204) = (2 Aug 0 Tota 0 Tota 121.54 80.3	02) × [1 Sep 0 0 I (kWh/yea 122.88 80.3	Oct 68.19 73.01 ar) = Sum(2) 0 ar) = Sum(2) 139.92 83.35 167.87	197.94 211.93 211) _{15.1012} 0 215) _{15.1012} 149.36 85.76	322.65 345.45 = 0 = 161.66 86.76	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)

Annual totals		kWh/year	г	kWh/year	1
Space heating fuel used, main system 1				1416.18	
Water heating fuel used			[1966.45	
Electricity for pumps, fans and electric keep-hot					
central heating pump:		[30		(230c)
boiler with a fan-assisted flue		[45		(230e)
Total electricity for the above, kWh/year	sum of (230a)	(230g) =	[75	(231)
Electricity for lighting			[238.76	(232)
12a. CO2 emissions – Individual heating systems	including micro-CHP				
	Energy kWh/year	Emission fact kg CO2/kWh	or	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	= [305.89	(261)
Space heating (secondary)	(215) x	0.519	= [0	(263)
Water heating	(219) x	0.216	= [424.75	(264)
Space and water heating	(261) + (262) + (263) + (264) =		[730.65	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	= [123.92	(268)
Total CO2, kg/year	sum	of (265)(271) =] [[893.49	(272)
			L		I

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa Address:	re Ver			Versio	n: 1.0.4.23	
Address :	2 Bed Flat, 219-223					nh Junct	tion. LON	NDON		
1. Overall dwelling dime						,	,			
Ground floor			Area 8		(1a) x		ight(m) 2.5	(2a) =	Volume(m³ 211.75) (3a)
Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	8	34.7	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3c	d)+(3e)+	.(3n) =	211.75	(5)
2. Ventilation rate:										
Number of chimneys	main s heating h	econdary neating 0	+	other 0] = [total 0	X 4	40 =	m ³ per hou	r (6a)
Number of open flues	0 +	0	+	0	=	0	×2	20 =	0	(6b)
Number of intermittent fa	ins				Γ	3	Х ′	10 =	30	(7a)
Number of passive vents	;				Ē	0	x ′	10 =	0	(7b)
Number of flueless gas fi	ires				Ē	0	X 4	40 =	0	(7c)
Infiltration due to chimne	ys, flues and fans = (6	a)+(6b)+(7a	ı)+(7b)+(7	7c) =	Г	30		Air ch ÷ (5) =	anges per ho	our
<i>If a pressurisation test has b</i> Number of storeys in th Additional infiltration Structural infiltration: 0	ne dwelling (ns)	ed, proceed	to (17), c	otherwise c		om (9) to ((16)	-1]x0.1 =	0	(9) (10) (11)
	resent, use the value corres ngs); if equal user 0.35	sponding to t	the greate	er wall area	a (after				0	(12)
If no draught lobby, en	ter 0.05, else enter 0			,					0	(13)
Percentage of windows	s and doors draught s	tripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,	• •		•	•		etre of e	envelope	area	5	(17)
If based on air permeabil	•								0.39	(18)
Air permeability value applie Number of sides sheltere		s been done	e or a deg	ree air pei	meability	is being u	sed	ĺ	2	
Shelter factor	0			(20) = 1 - [0.075 x (1	9)] =			0	(19) (20)
Infiltration rate incorporat	ting shelter factor			(21) = (18)	x (20) =				0.39	(21)
Infiltration rate modified f	-	d							0.00	
Jan Feb	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	beed from Table 7									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (2	2)m ÷ 4	ι Ι.							I	
	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allowi	ng for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
	0.5	0.49	0.48	0.43	0.42	0.37	0.37	0.36	0.39	0.42	0.44	0.46		
		c <i>tive air</i> al ventila	-	rate for t	he appli	cable ca	se							(23a)
				endix N. (2	3b) = (23a	a) × Fmv (e	equation (N5)) . othe	rwise (23b) = (23a)			0	
						or in-use fa				(200)			0	
			-	-	-					2b)m + (1	23h) v [[,]	1 – (23c)		(230)
(24a)m=	0			0	0	0	0				0]	(24a)
	balance	l d mecha	I anical ve	entilation	without	heat rec	coverv (I	I /IV) (24b	m = (22)	1 2b)m + (2	L 23b)		J	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(24b)
c) If v	whole h	u ouse ex	r tract ver	ntilation of	or positiv	ve input v	ventilatio	n from c	utside				1	
,					•	•				.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
,					•	/e input								
r	· ,		r <u>, ,</u>	r ·	<i>.</i>	erwise (2	· ·		r	- -			1	
(24d)m=	0.62	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61	J	(24d)
r		<u> </u>		· ·	, <u>,</u>	o) or (240	, <u>,</u>	<u>, </u>		0.50		0.04	1	(25)
(25)m=	0.62	0.62	0.62	0.59	0.59	0.57	0.57	0.57	0.58	0.59	0.6	0.61	J	(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
ELEN	IE <mark>NT</mark>	Gros		Openin		Net Ar		U-valu		AXU		k-value		A X k
		alea	(m²)	m	2	A,n	n²	W/m2	2K	(VV/ł	()	kJ/m².	K	kJ/K
Windov	ws Type		(m²)	m	12	A ,n		W/m2 /[1/(1.4)+		(W/ł 7.93	<)	kJ/m²-	К	kJ/K (27)
	ws Type ws Type	e 1	(m²)	m	12	· · ·	x1		0.04] =	`	<)	kJ/m ² ·	K	
Window		e 1 e 2	(m²)	m	2	5.98	x1	/[1/(1.4)+	0.04] = 0.04] =	7.93	<)	kJ/m²-	K	(27)
Window Window	ws Type	e 1 e 2 e 3	(m²)	m	2	5.98 0.86	x1 x1 x1	/[1/(1.4)+ /[1/(1.4)+	0.04] = [0.04] = [0.04] = [7.93 1.14		kJ/m²-	ĸ	(27) (27)
Windov Windov Windov	ws Type ws Type	e 1 e 2 e 3 e 4	(m²)	m		5.98 0.86 7.4	x1 x1 x1 x1 x1	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04] = 0.04] = 0.04] =	7.93 1.14 9.81		kJ/m²-I	ĸ	(27) (27) (27)
Windov Windov Windov	ws Type ws Type ws Type ws Type	e 1 e 2 e 3 e 4				5.98 0.86 7.4 4.83	x1 x1 x1 x1 x1 x1 x1	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+	0.04] = 0.04] = 0.04] = 0.04] =	7.93 1.14 9.81 6.4		kJ/m²-I	K T	(27) (27) (27) (27) (27)
Windov Windov Windov Windov	ws Type ws Type ws Type ws Type Type1	 2 3 4 5 27 		5.98		5.98 0.86 7.4 4.83 2.11 21.02	x1 x1 x1 x1 x1 x1 x1 x2 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78		kJ/m²+		(27) (27) (27) (27) (27) (29)
Windov Windov Windov Walls T Walls T	ws Type ws Type ws Type ws Type Type1 Type2	e 1 e 2 e 3 e 4 e 5 <u>27</u> <u>32.</u>	5	5.98		5.98 0.86 7.4 4.83 2.11 21.02 31.64	x1 x1 x1 x1 x1 x1 x1 x1 x1 x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18	$\begin{array}{c} 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ 0.04] = \\ \\ 0.04] = \\ \end{array}$	7.93 1.14 9.81 6.4 2.8 3.78 5.7		kJ/m²-		(27) (27) (27) (27) (27) (27) (29) (29)
Windov Windov Windov Walls T Walls T Walls T	ws Type ws Type ws Type ws Type Type1 Type2 Type3	 2 2 3 4 5 27 32.4 14.4 	555	5.98 0.86 7.4		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1	x1 x1 x1 x1 x1 x1 x1 x1 x x x x x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28		kJ/m²-		(27) (27) (27) (27) (27) (29) (29) (29)
Windov Windov Windov Walls T Walls T Walls T Walls T	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type4	 2 2 3 4 5 27 32.3 14.3 22 	5 5 2	5.98 0.86 7.4 2.11		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89	x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [= [= [= [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58		kJ/m²+		(27) (27) (27) (27) (27) (29) (29) (29) (29)
Windov Windov Windov Walls T Walls T Walls T Walls T Walls T	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type4	 1 2 3 4 5 27 32.3 14.4 22 9 	5	5.98 0.86 7.4 2.11 4.83		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17	x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x1 x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58 0.75		kJ/m²-		(27) (27) (27) (27) (29) (29) (29) (29) (29) (29)
Windov Windov Windov Walls T Walls T Walls T Walls T Walls T Roof	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type5	 2 3 4 5 27 32.4 14.4 22 9 84.5 	5552	5.98 0.86 7.4 2.11		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17 84.7	x1 x1 x1 x1 x1 x1 x1 x x x x x x x x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [= [= [= [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58		kJ/m²-		(27) (27) (27) (27) (29) (29) (29) (29) (29) (29) (29) (29
Windov Windov Windov Walls T Walls T Walls T Walls T Walls T Roof Total a	ws Type ws Type ws Type rype1 rype2 rype3 rype4 rype5 rea of e	 1 2 3 4 5 27 32.3 14.4 22 9 	5552	5.98 0.86 7.4 2.11 4.83		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17 84.7	x1 x1 x1 x1 x1 x1 x1 x x x x x x x x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58 0.75 11.01		kJ/m²+		(27) (27) (27) (27) (29) (29) (29) (29) (29) (29) (29) (29
Windov Windov Windov Walls T Walls T Walls T Walls T Roof Total a Party w	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type5 rea of e vall	 2 3 4 5 27 32.4 14.4 22 9 84.5 	5552	5.98 0.86 7.4 2.11 4.83		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17 84.7 189.7 17.5	x1 x1 x1 x1 x1 x1 x1 x x x x x x x x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18 0.18	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58 0.75		kJ/m²+		(27) (27) (27) (27) (29) (29) (29) (29) (29) (29) (29) (29
Windov Windov Windov Walls T Walls T Walls T Walls T Walls T Roof Total a Party w Party fl	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type5 rea of e wall oor	 1 2 3 4 5 27 32.4 14.3 22 9 84.7 	5552	5.98 0.86 7.4 2.11 4.83		5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17 84.7 189.7 17.5 84.7		/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18 0.18 0.18 0.13	0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58 0.75 11.01		kJ/m²-		(27) (27) (27) (27) (29) (29) (29) (29) (29) (29) (29) (29
Window Window Window Walls T Walls T Walls T Walls T Walls T Roof Total a Party w Party fl Interna * for window	ws Type ws Type ws Type ws Type Type1 Type2 Type3 Type5 rea of e vall oor I wall ** dows and	 a 1 b 2 c 3 c 4 c 5 c 27 c 32.4 c 4 c 27 c 32.4 c 14.4 c 22 c 9 c 84.7 	5 5 7 7 5, m ²	5.98 0.86 7.4 2.11 4.83 0	ndow U-ve	5.98 0.86 7.4 4.83 2.11 21.02 31.64 7.1 19.89 4.17 84.7 17.5 84.7 126.5 alue calcula	x1 x1 x1 x1 x1 x1 x1 x1 x x x x x x x x	/[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ /[1/(1.4)+ 0.18 0.18 0.18 0.18 0.18 0.13	0.04] = [0.04] = [7.93 1.14 9.81 6.4 2.8 3.78 5.7 1.28 3.58 0.75 11.01				(27) (27) (27) (27) (29) (29) (29) (29) (29) (29) (29) (29

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	54.18	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	14800.8	(34)
Thermal mass parameter (TMP = Cm \div TFA) in kJ/m ² K	Indicative Value: Medium	250	(35)
For design assessments where the details of the construction are not known p	recisely the indicative values of TMP in Table 1f		_

Stroma FSAP 2012 Version: 1.0.4.23 (SAP 9.92) - http://www.stroma.com

can be ι	ised inste	ad of a dei	tailed calc	ulation.										
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						8.13	(36)
if details	of therma	al bridging	are not kri	own (36) =	= 0.05 x (3	1)								
Total fa	abric he	at loss							(33) +	(36) =			62.31	(37)
Ventila	tion hea	at loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	43.65	43.31	42.98	41.42	41.13	39.78	39.78	39.52	40.3	41.13	41.72	42.34		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	105.96	105.63	105.29	103.74	103.45	102.09	102.09	101.84	102.61	103.45	104.04	104.65		
		motor (F	יאי ים ור	/m2k						Average = = (39)m ÷	Sum(39) ₁	.12 /12=	103.74	(39)
(40)m=	1.25	meter (H	1.24	1.22	1.22	1.21	1.21	1.2	1.21	- (33) m ÷	(+)	1.24		
(40)m=	1.20	1.25	1.24	1.22	1.22	1.21	1.21	1.2					1.00	(40)
Numbe	er of day	vs in mor	nth (Tab	le 1a)					+	<pre>average =</pre>	Sum(40)1	.12 / 12=	1.22	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ting ener	rav reau	irement:								kWh/ye	ear:	
													1	
		ipancy, I		[1 - ovo	(_0_0003		-13 0)2)] + 0.0)013 v (T	FEA -13		55		(42)
	A £ 13.9		T 1.70 X	[i - evh	(-0.0003	49 X (11	A - 13.9)2)] + 0.0	013 x (1	п д -13.	5)			
								(25 x N)				.67		(43)
				usage by { [•] day (all w				to achieve	a water us	se target o	f			
normore														
11-4-1	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
HOT WATE	-		aay tor ea	ach month	va,m = Tai	ctor from 1		(43)						
(44)m=	104.13	100.35	96.56	92.77	88.99	85.2	85.2	88.99	92.77	96.56	100.35	104.13		-
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,n	n x nm x D)Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1136.02	(44)
(45)m=	154.43	135.06	139.37	121.51	116.59	100.61	93.23	106.98	108.26	126.17	137.72	149.56		
										Fotal = Su	m(45) ₁₁₂ =	:	1489.5	(45)
lf instant	taneous w	ater heatii	ng at point	of use (no	hot water	storage),	enter 0 in	boxes (46)) to (61)					
(46)m=	23.16	20.26	20.91	18.23	17.49	15.09	13.98	16.05	16.24	18.93	20.66	22.43		(46)
	storage		الم ماريما							aal			I	
-		. ,					-	within sa	ime vess	sei	()		(47)
	•	•		ink in dw	•			(47) mbi boile	are) onto	or 'O' in (47)			
	storage		not wate	51 (1115 11		istantai			ers) ente		47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):)		(48)
		actor fro				,	,)		(49)
				, kWh/ye	ar			(48) x (49)	=)		(50)
			-	cylinder l		or is not					`	,		(00)
				om Tabl							()		(51)
	•	eating s		on 4.3										
		from Tal		0							()		(52)
Tempe	erature f	actor fro	m l'able	2b							()		(53)

		m water (54) in (5	-	, kWh/ye	ear			(47) x (51)) x (52) x (53) =	0			(54) (55)
		loss cal		for each	month			((56)m = (55) × (41)r	m	L			
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	er contain	s dedicate	l d solar sto	l rage, (57)ı	n = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (I H11) is fro	m Append	l lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
•		i	i	i	i	i	i	<u> </u>	cylinde		<u> </u>	·	1	()
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m			-	-		
(61)m=	50.96	46.03	49.21	45.75	45.35	42.02	43.42	45.35	45.75	49.21	49.32	50.96		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)n	۱
(62)m=	205.39	181.09	188.58	167.26	161.94	142.63	136.65	152.33	154.01	175.37	187.04	200.51		(62)
Solar DI	HW input	calculated	using App	endix G oı	· Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WHRS	applies	, see Ap	pendix C	G)				1	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter	i										
(64)m=	205.39	181.09	188.58	167.26	161.94	142.63	136.65	152.33	154.01	175.37	187.04	200.51		_
								Outp	out from wa	ater heate	r (annual)₁	12	2052.8	(64)
Heat g		m water	heating,	kWh/m	onth 0.2	5 [0.85	× (45)m	+ (61)m	n] + 0.8 x	(<mark>46)m</mark>	+ (57)m	+ (59)m]	
(65)m=	64.09	56.42	58.64	51.84	50.1	43.96	41.85	46.91	47.43	54.25	58.12	62.47		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Ini	ternal ga	ains (see	e Table §	5 and 5a):									
Metab	olic gair	s (Table	5), Wat	ts							1	i		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3		(66)
Lightin	g gains	(calcula	· · · ·	pendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5	r	i	i		
(67)m=	20.41	18.13	14.75	11.16	8.34	7.04	7.61	9.89	13.28	16.86	19.68	20.98		(67)
Applia	nces ga	· · · · · · · · · · · · · · · · · · ·	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), alsc	see Tal	ble 5	1		L	
(68)m=	228.98	231.36	225.37	212.62	196.53	181.41	171.31	168.93	174.92	187.66	203.76	218.88		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)	, also se	e Table	5				
(69)m=	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73		(69)
Pumps	and fa	ns gains	(Table &	ōa)										
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	s e.g. ev	aporatio	n (nega	tive valu	es) (Tab	le 5)					-	-		
(71)m=	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84		(71)
Water	heating	gains (T	able 5)											
(72)m=	86.14	83.95	78.82	72	67.34	61.05	56.25	63.05	65.88	72.92	80.72	83.96		(72)
Total i	nternal	gains =				(66)	m + (67)m	ı + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m=	399.73	397.63	383.13	359.98	336.41	313.7	299.36	306.06	318.27	341.64	368.35	388.01		(73)
6. So	lar gains	5:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Factor Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	0.86	×	11.28	x	0.63	x	0.7	=	2.97	(75)
Northeast 0.9x	0.77	x	0.86	x	22.97	x	0.63	x	0.7	=	6.04	(75)
Northeast 0.9x	0.77	x	0.86	x	41.38	x	0.63	x	0.7	=	10.88	(75)
Northeast 0.9x	0.77	x	0.86	x	67.96	x	0.63	x	0.7	=	17.86	(75)
Northeast 0.9x	0.77	x	0.86	x	91.35	x	0.63	x	0.7	=	24.01	(75)
Northeast 0.9x	0.77	x	0.86	x	97.38	x	0.63	x	0.7	=	25.6	(75)
Northeast 0.9x	0.77	x	0.86	x	91.1	x	0.63	x	0.7	=	23.94	(75)
Northeast 0.9x	0.77	x	0.86	x	72.63	x	0.63	x	0.7	=	19.09	(75)
Northeast 0.9x	0.77	x	0.86	x	50.42	x	0.63	x	0.7	=	13.25	(75)
Northeast 0.9x	0.77	x	0.86	x	28.07	x	0.63	x	0.7	=	7.38	(75)
Northeast 0.9x	0.77	x	0.86	x	14.2	x	0.63	x	0.7	=	3.73	(75)
Northeast 0.9x	0.77	x	0.86	x	9.21	x	0.63	x	0.7	=	2.42	(75)
Southeast 0.9x	0.77	x	2.11	x	36.79	x	0.63	x	0.7	=	23.73	(77)
Southeast 0.9x	0.77	x	2.11	x	62.67	x	0.63	x	0.7	=	40.41	(77)
Southeast 0.9x	0.77	x	2.11	x	85.75	x	0.63	x	0.7	=	55.3	(77)
Southeast 0.9x	0.77	x	2.11	×	106.25	х	0.63	x	0.7	=	68.52	(77)
Southeast 0.9	0.77	x	2.11	x	119.01	x	0.63	x	0.7	=	76.74	(77)
Southeast 0.9x	0.77	x	2.11	x	118.15	×	0.63	x	0.7	=	76.19	(77)
Southeast 0.9x	0.77	x	2.11	x	113.91	x	0.63	x	0.7	=	73.45	(77)
Southeast 0.9x	0.77	x	2.11	x	104.3 <mark>9</mark>	x	0.63	x	0.7	=	67.32	(77)
Southeast 0.9x	0.77	x	2.11	x	92 <mark>.85</mark>	x	0.63	x	0.7	=	59.87	(77)
Southeast 0.9x	0.77	x	2.11	×	69.27	x	0.63	x	0.7	=	44.67	(77)
Southeast 0.9x	0.77	x	2.11	x	44.07	x	0.63	x	0.7	=	28.42	(77)
Southeast 0.9x	0.77	x	2.11	x	31.49	x	0.63	x	0.7	=	20.3	(77)
Southwest0.9x	0.77	x	5.98	x	36.79		0.63	x	0.7	=	67.24	(79)
Southwest0.9x	0.77	x	5.98	x	62.67		0.63	x	0.7	=	114.54	(79)
Southwest0.9x	0.77	x	5.98	x	85.75		0.63	x	0.7	=	156.72	(79)
Southwest0.9x		x	5.98	x	106.25		0.63	x	0.7	=	194.18	(79)
Southwest0.9x	0.77	x	5.98	×	119.01		0.63	x	0.7	=	217.5	(79)
Southwest0.9x		x	5.98	x	118.15		0.63	x	0.7	=	215.93	(79)
Southwest0.9x		x	5.98	x	113.91		0.63	x	0.7	=	208.18	(79)
Southwest0.9x		x	5.98	x	104.39		0.63	x	0.7	=	190.78	(79)
Southwest0.9x		x	5.98	x	92.85		0.63	x	0.7	=	169.69	(79)
Southwest0.9x		x	5.98	x	69.27		0.63	x	0.7	=	126.59	(79)
Southwest0.9x		x	5.98	x	44.07		0.63	x	0.7	=	80.54	(79)
Southwest0.9x	0.77	x	5.98	×	31.49		0.63	x	0.7	=	57.55	(79)
West 0.9x		x	4.83	×	19.64	x	0.63	x	0.7	=	28.99	(80)
West 0.9x	0.77	x	4.83	×	38.42	x	0.63	x	0.7	=	56.71	(80)
West 0.9x	0.77	x	4.83	x	63.27	x	0.63	x	0.7	=	93.4	(80)

		-		-		-						_
West 0.9x	0.77	×	4.83	×	92.28	X	0.63	×	0.7	=	136.22	(80)
West 0.9x	0.77	×	4.83	×	113.09	×	0.63	×	0.7	=	166.94	(80)
West 0.9x	0.77	×	4.83	×	115.77	×	0.63	×	0.7	=	170.89	(80)
West 0.9x	0.77	x	4.83	×	110.22	x	0.63	×	0.7	=	162.69	(80)
West 0.9x	0.77	X	4.83	x	94.68	x	0.63	x	0.7	=	139.75	(80)
West 0.9x	0.77	x	4.83	x	73.59	x	0.63	x	0.7	=	108.63	(80)
West 0.9x	0.77	x	4.83	x	45.59	x	0.63	x	0.7	=	67.29	(80)
West 0.9x	0.77	x	4.83	x	24.49	x	0.63	×	0.7	=	36.15	(80)
West 0.9x	0.77	x	4.83	x	16.15	x	0.63	x	0.7	=	23.84	(80)
Northwest 0.9x	0.77	x	7.4	×	11.28	x	0.63	×	0.7	=	25.52	(81)
Northwest 0.9x	0.77	x	7.4	x	22.97	x	0.63	x	0.7	=	51.94	(81)
Northwest 0.9x	0.77	x	7.4	x	41.38	x	0.63	x	0.7	=	93.58	(81)
Northwest 0.9x	0.77	x	7.4] ×	67.96	x	0.63	×	0.7	=	153.68	(81)
Northwest 0.9x	0.77	x	7.4	×	91.35	x	0.63	x	0.7	=	206.58	(81)
Northwest 0.9x	0.77	x	7.4	×	97.38	x	0.63	×	0.7	=	220.24	(81)
Northwest 0.9x	0.77	×	7.4	X	91.1	x	0.63	- x	0.7	=	206.03	(81)
Northwest 0.9x	0.77	x	7.4	Ī×	72.63	x	0.63	×	0.7	=	164.25	(81)
Northwest 0.9x	0.77	×	7.4	X	50.42	x	0.63	x	0.7	=	114.03	(81)
Northwest 0.9x	0.77	ے x آ	7.4	j x	28.07	x	0.63	x	0.7		63.47	(81)
Northwest 0.9x	0.77	- X	7.4	x	14.2	i 人	0.63	x	0.7	=	32.11	(81)
Northwest 0.9x	0.77	×	7.4	İ x	9.21	x	0.63	x	0.7	=	20.84	(81)
						-		-				
Solar gains in	watts, calcu	lated	for each mon	th		(83)m	n = Sum(74)m	.(82)m				
(83)m= 148.44	269.64 40	9.87	570.46 691.7	7 7	08.84 674.3	581	.18 465.47	309.4	180.95	124.95		(83)
Total gains –	nternal and	solar	(84)m = (73)r	n + (83)m , watts							
<mark>(84)m=</mark> 548.17	667.28 7	93	930.44 1028.	18 1	022.54 973.66	887	.25 783.74	651.04	549.3	512.96		(84)
7. Mean inte	rnal tempera	iture (heating seas	on)								
Temperature	during heat	ing pe	eriods in the li	ving	area from Tal	ble 9	, Th1 (°C)				21	(85)
Utilisation fa	ctor for gains	s for li	iving area, h1	,m (s	ee Table 9a)							
Jan	Feb I	Mar	Apr Ma	y	Jun Jul	A	ug Sep	Oct	Nov	Dec		
(86)m= 1	0.99 0	.98	0.92 0.8		0.61 0.46	0.5	52 0.78	0.96	0.99	1		(86)
Mean interna	I temperatu	re in l	iving area T1	(follo	ow steps 3 to 7	7 in T	able 9c)					
(87)m= 19.67	<u>i i</u>).18	20.57 20.8	<u>`</u>	20.97 20.99	20.	<u> </u>	20.51	20.02	19.64		(87)
Tamparatura		ing n	I		ulling from To							
(88)m= 19.88	<u>1 </u>	9.89	19.9 19.9	_	velling from Ta	19.	<u> </u>	19.9	19.9	19.89		(88)
	II		I		I			10.0	10.0	10.00		()
	T T			_	,m (see Table	T Ó		0.04		4	l	(20)
(89)m= 1	0.99 0	.97	0.9 0.74		0.52 0.35	0.4	4 0.7	0.94	0.99	1		(89)
	r [·] r				T2 (follow ste	r –	1 1				I	
(90)m= 18.12	18.41 18	8.86	19.41 19.76	6	19.9 19.91	19.		19.35		18.08		(90)
							fl	_A = Liv	ring area ÷ (4	+) =	0.3	(91)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

							-	_		_	_			
(92)m=	18.59	18.85	19.26	19.76	20.09	20.22	20.24	20.24	20.16	19.7	19.06	18.56		(92)
Apply a	adjustm	nent to t	he mear	internal	temper	ature fro	m Table	4e, whe	ere appro	opriate	_			
(93)m=	18.59	18.85	19.26	19.76	20.09	20.22	20.24	20.24	20.16	19.7	19.06	18.56		(93)
8. Spac	ce heat	ting requ	uirement											
				•		ed at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
the utili	isation	factor fo	or gains	using Ta	ble 9a								I	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisati	ī		ains, hm	i			1						I	
(94)m=	0.99	0.99	0.96	0.9	0.75	0.55	0.38	0.44	0.72	0.94	0.99	1		(94)
_	<u> </u>		· _ ` _	4)m x (84	,			r		r	r		1	
(95)m=	545.21	658.46	764.72	833.48	771.86	557.97	369.56	386.91	564.72	612.1	543.02	510.9		(95)
Monthl	y avera	age exte	rnal tem	perature	e from Ta	able 8							1	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			1	· · · ·		Lm , W =	=[(39)m :	x [(93)m	– (96)m]	i			
(97)m= 1	1514.05	1473.86	1343.87	1126.94	867.98	573.89	371.74	391.06	621.46	941.21	1243.82	1502.35		(97)
Space	heating	g require	ement fo	r each m	nonth, k\	Nh/mon ⁻	th = 0.02	24 x [(97)m – (95)m] x (4	1)m		1	
(98)m=	720.81	547.95	430.89	211.29	71.52	0	0	0	0	244.85	504.58	737.64		
								Tota	l per year	(kWh/yeai) = Sum(9	8)15,912 =	3469.53	(98)
Space	heating	n require	ement in	kWh/m ²	/year								40.96	(99)
9a. Enei						votomo i	noluding		חחי					
				iviuuai n	eating s	ystems i								
Space Fraction		•	t from s	econdar	/supple	mentary	v system						0	(201)
						in or nearly		(202) = 1	(201) -					(202)
	in or sp	ace nea	а попі п	nain syst	em(s)			(202) - 1	- (201) -				1	
								(22.0) (2		(0.00)7				
Fractio	n of tot	al heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
				main sys ing syste				(204) = (2		(203)] =				
Efficien	ncy of n	nain spa	ace heat		em 1	g system		(204) = (2		(203)] =			1	(204)
Efficien	ncy of n ncy of s	nain spa econda	ace heat	ing syste	em 1 y heating	g system Jun	n, %		02) × [1 –	(203)] = Oct	Nov	Dec	1 93.4 0	(204) (206) (208)
Eff <mark>icien</mark> Efficien	ncy of n ncy of s Jan	nain spa seconda Feb	ace heat ry/suppl Mar	ing syste ementar Apr	em 1 y heating May	Jun		(204) = (2 Aug			Nov	Dec	1 93.4	(204) (206) (208)
Efficien Efficien Space	ncy of n ncy of s Jan	nain spa seconda Feb	ace heat ry/suppl Mar	ing syste	em 1 y heating May	Jun	n, %		02) × [1 –		Nov 504.58	Dec 737.64	1 93.4 0	(204) (206) (208)
Efficien Efficien Space	ncy of n ncy of s Jan heating 720.81	nain spa seconda Feb g require 547.95	ace heat ry/supple Mar ement (c 430.89	ing syste ementary Apr alculated 211.29	em 1 y heating May d above) 71.52	Jun	n, % Jul	Aug	02) × [1 – Sep	Oct	_		1 93.4 0	(204) (206) (208) ear
Efficien Efficien Space	Decy of n Decy of s Jan heating 720.81 = {[(98)	Feb g require 547.95	ace heat ry/supple Mar ement (c 430.89 (4)] } x 1	Apr 211.29 00 ÷ (20	em 1 y heating May d above) 71.52	Jun) 0	n, % Jul 0	Aug 0	02) × [1 – Sep 0	Oct 244.85	504.58	737.64	1 93.4 0	(204) (206) (208)
Efficien Efficien Space	ncy of n ncy of s Jan heating 720.81	nain spa seconda Feb g require 547.95	ace heat ry/supple Mar ement (c 430.89	ing syste ementary Apr alculated 211.29	em 1 y heating May d above) 71.52	Jun	n, % Jul	Aug 0	02) × [1 – Sep 0	Oct 244.85 262.16	504.58 540.23	737.64 789.76	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficien Efficien Space (211)m =	Decy of n hecy of s Jan heating 720.81 = {[(98) 771.75	reconda Feb g require 547.95 m x (20 586.67	ace heat ry/supple Mar ement (c 430.89 4)] } x 1 461.34	Apr alculated 211.29 00 ÷ (20 226.22	em 1 y heating May d above) 71.52 06) 76.57	Jun) 0	n, % Jul 0	Aug 0	02) × [1 – Sep 0	Oct 244.85 262.16	504.58 540.23	737.64 789.76	1 93.4 0	(204) (206) (208) ear
Efficien Efficien Space (211)m =	heating 720.81 = {[(98) 771.75	Feb g require 547.95 mm x (20 586.67	ace heat ry/supple ament (c 430.89 (4)] } x 1 (461.34 econdar	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/	em 1 y heating May d above) 71.52 06) 76.57	Jun) 0	n, % Jul 0	Aug 0	02) × [1 – Sep 0	Oct 244.85 262.16	504.58 540.23	737.64 789.76	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficien Efficien Space (211)m = Space = {[(98)n	heating 720.81 = {[(98) 771.75 heating m x (20	nain spa seconda <u>Feb</u> <u>g require</u> 547.95 m x (20 586.67 g fuel (s 1)] } x 1	ace heat ry/supple mar ement (c 430.89 4)] } x 1 461.34 econdar 00 ÷ (20	ing syste ementar alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8)	em 1 y heating d above) 71.52 06) 76.57 month	Jun 0 0	n, % Jul 0	Aug 0 Tota	02) × [1 – Sep 0 0 I (kWh/yea	Oct 244.85 262.16 ar) =Sum(2	504.58 540.23 211) _{15,1012}	737.64 789.76 =	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficien Efficien Space (211)m =	heating 720.81 = {[(98) 771.75	Feb g require 547.95 mm x (20 586.67	ace heat ry/supple ament (c 430.89 (4)] } x 1 (461.34 econdar	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/	em 1 y heating May d above) 71.52 06) 76.57	Jun) 0	n, % Jul 0	Aug 0 Tota	02) × [1 – Sep 0 1 (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0	504.58 540.23 211) _{15.1012} 0	737.64 789.76 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficien Efficien Space (211)m = (211)m = Space = {[(98)n (215)m=	hcy of n hcy of s Jan heating 720.81 = {[(98) 771.75 heating n x (20 0	nain spa seconda <u>Feb</u> g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0	ace heat ry/supple mar ement (c 430.89 4)] } x 1 461.34 econdar 00 ÷ (20	ing syste ementar alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8)	em 1 y heating d above) 71.52 06) 76.57 month	Jun 0 0	n, % Jul 0	Aug 0 Tota	02) × [1 – Sep 0 0 I (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0	504.58 540.23 211) _{15.1012} 0	737.64 789.76 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211)
Efficien Efficien Space (211)m = (211)m = (211)m = (215)m = (215)m =	heating heating 720.81 $= \{[(98)]$ 771.75 heating $m \times (20)$ 0 heating	nain spa econda <u>Feb</u> g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0	ace heat ry/supple ement (c 430.89 (4)] } x 1 461.34 econdar 00 ÷ (20 0	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0	em 1 y heating d above) 71.52 06) 76.57 month 0	Jun 0 0	n, % Jul 0	Aug 0 Tota	02) × [1 – Sep 0 1 (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0	504.58 540.23 211) _{15.1012} 0	737.64 789.76 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficien Efficien Space (211)m = (211)m = (215)m = Water h Output f	heating heating 720.81 $= \{[(98)]$ 771.75 heating m x (20) 0 heating m x (20)	nain spa seconda <u>Feb</u> <u>g require</u> 547.95 <u>m x (20</u> 586.67 <u>g fuel (s</u> <u>1)] } x 1</u> <u>0</u>	ace heat ry/supple ement (c 430.89 (4)] } x 1 (461.34 (20) 0) ÷ (20) 0 (0)	ing syste ementar alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0	em 1 y heating d above) 71.52 06) 76.57 month 0	Jun 0 0 0 0	n, % Jul 0	Aug 0 Tota 0 Tota	02) × [1 – Sep 0 0 I (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2	504.58 540.23 211) _{15,1012} 0 215) _{15,1012}	737.64 789.76 = 0	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211)
Efficien Efficien Space (211)m = (211)m = (215)m = Water h Output f	ncy of n ncy of s Jan heating 720.81 = {[(98) 771.75 heating n x (20 0 neating irom wa 205.39	nain spa seconda Feb g require 547.95 mm x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09	ace heat ry/supple ement (c 430.89 (4)] } x 1 461.34 econdar 00 ÷ (20 0 (20 0 (20 0 (20 0) (20 0)	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0	em 1 y heating d above) 71.52 06) 76.57 month 0	Jun 0 0	n, % Jul 0	Aug 0 Tota	02) × [1 – Sep 0 1 (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0	504.58 540.23 211) _{15.1012} 0	737.64 789.76 = 0	1 93.4 0 kWh/ye 3714.7	(204) (206) (208) ear (211) (211) (211)
Efficien Efficien Space (211)m = (211)m = (215)m= Water h Output f	heating (900) $(90$	nain spa econda Feb g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09 ater hea	ace heat ry/supple ement (c 430.89 4)] } x 1 461.34 econdar 00 ÷ (20 0 ter (calc 188.58 ter	ing syste ementar alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0 ulated al 167.26	em 1 y heating d above) 71.52 06) 76.57 month 0 0 0 00ve) 161.94	Jun 0 0 0 142.63	n, % Jul 0 0	Aug 0 Tota 0 Tota 152.33	02) × [1 – Sep 0 0 I (kWh/yea 154.01	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2 175.37	504.58 540.23 211) _{15,1012} 0 215) _{15,1012} 187.04	737.64 789.76 = 0 = 200.51	1 93.4 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Efficient Efficient Space (211)m = (211)m = (211)m = (215)m = (215)m = Water h Output f Efficient (217)m =	ncy of n ncy of s Jan heating 720.81 = {[(98) 771.75 heating m x (20 0 heating 0 0 0	nain spa seconda Feb g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09 ater hea 87.66	ace heat ry/supple ement (c 430.89 (4)] } x 1 461.34 (4)] } x 1 461.34 (20 0 0 (0) (20 0 (0) (20 0 (0) (20) (2	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0 ulated al 167.26 85.64	em 1 y heating d above) 71.52 06) 76.57 month 0	Jun 0 0 0 0	n, % Jul 0	Aug 0 Tota 0 Tota	02) × [1 – Sep 0 0 I (kWh/yea	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2	504.58 540.23 211) _{15,1012} 0 215) _{15,1012}	737.64 789.76 = 0	1 93.4 0 kWh/ye 3714.7	(204) (206) (208) ear (211) (211) (211)
Efficient Efficient Space (211)m = (211)m = (215)m = (215)m = Water h Output f Efficient (217)m = Fuel for	heating (900) $(900)(900)$ $(900)(900)(900)$ $(900)(900)(900)$ (900)	nain spa seconda Feb g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09 ater hea 87.66 neating,	ace heat ry/supple ement (c 430.89 4)] } x 1 461.34 econdar 00 ÷ (20 0 188.58 ter 87.07 kWh/mo	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0 ulated al 167.26 85.64 onth	em 1 y heating d above) 71.52 06) 76.57 month 0 0 0 00ve) 161.94	Jun 0 0 0 142.63	n, % Jul 0 0	Aug 0 Tota 0 Tota 152.33	02) × [1 – Sep 0 0 I (kWh/yea 154.01	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2 175.37	504.58 540.23 211) _{15,1012} 0 215) _{15,1012} 187.04	737.64 789.76 = 0 = 200.51	1 93.4 0 kWh/ye 3714.7	(204) (206) (208) ear (211) (211) (211) (215)
Efficient Efficient Space (211)m = (211)m = (215)m= Water h Output f Efficient (217)m= Fuel for (219)m =	heating 720.81 $= \{[(98)]$ 771.75 heating n x (20) 0 heating n x (20) 0 0 205.39 205.3	nain spa econda Feb g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09 ater hea 87.66 neating, m x 100	ace heat ry/supple mar (ament (c 430.89 (4)] } x 1 461.34 (461.34 (461.34)	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0 ulated al 167.26 85.64 onth m	em 1 y heating d above) 71.52 06) 76.57 month 0 0 0 00ve) 161.94 83.15	Jun 0 0 0 142.63 80.3	n, % Jul 0 0 136.65 80.3	Aug 0 Tota 0 Tota 152.33 80.3	02) × [1 – Sep 0 0 I (kWh/yea 154.01 80.3	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2 175.37 85.89	504.58 540.23 211) _{15.1012} 0 215) _{15.1012} 187.04 87.43	737.64 789.76 = 0 = 200.51 88.03	1 93.4 0 kWh/ye 3714.7	(204) (206) (208) ear (211) (211) (211) (215)
Efficient Efficient Space (211)m = (211)m = (215)m = (215)m = Water h Output f Efficient (217)m = Fuel for	heating 720.81 $= \{[(98)]$ 771.75 heating n x (20) 0 heating n x (20) 0 0 205.39 205.3	nain spa seconda Feb g require 547.95 m x (20 586.67 g fuel (s 1)] } x 1 0 ater hea 181.09 ater hea 87.66 neating,	ace heat ry/supple ement (c 430.89 4)] } x 1 461.34 econdar 00 ÷ (20 0 188.58 ter 87.07 kWh/mo	ing syste ementary alculated 211.29 00 ÷ (20 226.22 y), kWh/ 8) 0 ulated al 167.26 85.64 onth	em 1 y heating d above) 71.52 06) 76.57 month 0 0 0 00ve) 161.94	Jun 0 0 0 142.63	n, % Jul 0 0	Aug 0 Tota 0 Tota 152.33 80.3	02) × [1 – Sep 0 0 I (kWh/yea 154.01	Oct 244.85 262.16 ar) =Sum(2 0 ar) =Sum(2 175.37 85.89 204.18	504.58 540.23 211) _{15,1012} 0 215) _{15,1012} 187.04	737.64 789.76 = 0 = 200.51	1 93.4 0 kWh/ye 3714.7	(204) (206) (208) ear (211) (211) (211) (215)

Annual totals Space heating fuel used, main system 1		kWh/year	Г	kWh/year 3714.7]
Water heating fuel used			Γ	2421.96	ĺ
Electricity for pumps, fans and electric keep-hot					•
central heating pump:			30		(230c)
boiler with a fan-assisted flue		Γ	45		(230e)
Total electricity for the above, kWh/year	sum of (230a)	(230g) =		75	(231)
Electricity for lighting			Ē	360.52	(232)
12a. CO2 emissions – Individual heating systems	including micro-CHP				
	Energy kWh/year	Emission factor kg CO2/kWh	or	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	= [802.38	(261)
Space heating (secondary)	(215) x	0.519	= [0	(263)
Water heating	(219) x	0.216	= [523.14	(264)
Space and water heating	(261) + (262) + (263) + (264) =			1325.52	(265)
Elec <mark>tricity for pumps, fans and</mark> electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	- [187.11	(268)
Total CO2, kg/year	sum o	of (265)(271) =		1551.55	(272)
					•

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 20			Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
Address :	1 Bed Flat, 219-22			Address:		ah lunct	tion I ON			
1. Overall dwelling dime			bour La	ne, Loug	μηροιοαί	gri Junci	lion, LON	NDOIN		
Ground floor				a(m²) 19.8	(1a) x		ight(m) 2.5	(2a) =	Volume(m 124.5	³) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1	1e)+(1n) 4	19.8	(4)					
Dwelling volume					(3a)+(3b))+(3c)+(3c	l)+(3e)+	.(3n) =	124.5	(5)
2. Ventilation rate:										
Number of chimneys Number of open flues	main heating 0 +	secondary heating 0	/] + [_] + [_	0 0] = [total 0 0		40 = 20 =	m ³ per hou	Jr (6a) (6b)
Number of intermittent fa		0		0		-		10 =	-	
	115				Ļ	2			20	(7a)
Number of passive vents					L	0	X	10 =	0	(7b)
Number of flueless gas fi	res					0	X 4	⁴⁰ = Air ch	0 anges per he	(7c) our
Infiltration due to chimney						20		÷ (5) =	0.16	(8)
If a pressurisation test has b Number of storeys in th Additional infiltration Structural infiltration: 0. if both types of wall are pr deducting areas of openir	ne dwelling (ns) 25 for steel or timbe resent, use the value corre	r frame or	0.35 for	masonr	y constr			-1]x0.1 =	0 0 0	(9) (10) (11)
If suspended wooden f	• • •	aled) or 0.	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ent			,	,,					0	(13)
Percentage of windows	s and doors draught	stripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)
Air permeability value,	q50, expressed in cu	ubic metres	s per ho	our per so	quare m	etre of e	envelope	area	5	(17)
If based on air permeabil	3								0.41	(18)
Air permeability value applie		as been don	e or a deg	ree air pei	meability	is being u	sed			
Number of sides sheltere Shelter factor	a			(20) = 1 - [0.075 x (1	9)] =			3 0.78	(19) (20)
Infiltration rate incorporat	ing shelter factor			(21) = (18)					0.32	(20)
Infiltration rate modified for	-	ed							0.02	
	Mar Apr May	1 1	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind sp	eed from Table 7									
	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	2)m ÷ 4	· ·					-	•		
	1.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		
·	• •						-		•	

Adjust	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m	-	-	-		
~ / /	0.41	0.4	0.39	0.35	0.34	0.3	0.3	0.29	0.32	0.34	0.36	0.37		
	<i>ate effec</i> echanica		-	rate for t	he appli	cable ca	se							(23a)
	aust air he			endix N, (2	3b) = (23a	a) × Fmv (e	equation (I	N5)) , othei	wise (23b) = (23a)			0	(23a) (23b)
	anced with	• •	0 11		, (, (• •	,, .	,	, , ,			0	(23c)
a) If	balance	d mecha	anical ve	entilation	with he	at recove	erv (MVI	HR) (24a	m = (22)	2b)m + (23b) × [′	1 – (23c)	-	()
(24a)m=	r	0	0	0	0	0	0	0	0	0	0	0]	(24a)
b) If	balance	d mecha	anical ve	entilation	without	heat rec	overy (N	и ЛV) (24b)m = (22	1 2b)m + (2	23b)		1	
, (24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole ho	ouse ex	tract ver	ntilation of	or positiv	ve input v	ventilatio	on from c	outside	!	!		1	
,	if (22b)m				•	•				5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,	natural v if (22b)m									0.5]			-	
(24d)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0.56	0.56	0.57		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24t	o) or (24	c) or (24	d) in boy	(25)					
(25)m=	0.58	0.58	0.58	0.56	0.56	0.55	0.55	0.54	0.55	0 <mark>.56</mark>	0.56	0.57		(25)
3 He	at losses	and he	at loss i	naramete	ər:									
ELEN		Gros		Openin		Net Ar	ea	U-valı	le	AXU		k-value		AXk
		area		m		A ,r		W/m2		(W/I	K)	kJ/m ² ·l		kJ/K
Windo	ws Type	1				10.13	x1	/[1/(1.4)+	0.04] =	13.43				(27)
Windo	ws Type	2				2.32	x1	/[1/(1.4)+	0.04] =	3.08				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.13	3	9.37	x	0.18] = [1.69				(29)
Walls ⁻	Type2	3.5		2.32		1.18	x	0.18	= [0.21	٦ ī		┓ ┏	(29)
Total a	rea of el	ements	, m²			23								(31)
Party v	vall					51.75	5 x	0	=	0				(32)
Party f	loor					49.8			'		L		\dashv	(32a)
Party of	ceiling					49.8					Γ		\exists	(32b)
Interna	al wall **					45.6					Г		\dashv	(32c)
	dows and						ated using	formula 1	/[(1/U-valu	ie)+0.04] a	L as given in	paragraph		
	le the area heat los				s and par	titions		(26)(30)	+ (32) -					
	apacity (-		0)				(20)(00)		(30) + (32	2) + (225)	(220) -	18.4	(33)
	apacity (al mass			2 – Cm ·	TEA) ir	k l/m2k				tive Value	· · · ·	(320) =	13281.	
	ign assessi	•	•					ecisely the				able 1f	250	(35)
	used instea				conotract		naionii pi		maloutro	valuee of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						2.25	(36)
	of therma		are not kn	own (36) =	= 0.05 x (3	1)			()	()			(
	abric hea									(36) =			20.65	(37)
Ventila	tion hea									= 0.33 × (r	1	
(00)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(00)
(38)m=	23.92	23.79	23.66	23.06	22.95	22.42	22.42	22.32	22.62	22.95	23.18	23.42	l	(38)
	ansfer c			, , , , , , , , , , , , , , , , , , , ,				1	· · · · · · · · · · · · · · · · · · ·	= (37) + (3		1	1	
(39)m=	44.58	44.44	44.32	43.71	43.6	43.07	43.07	42.97	43.27	43.6	43.83	44.07	(
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		,	Average =	Sum(39)1	12 /12=	43.7 þ	age 2 o ⁽³⁹⁾

(40)m= 0.9 0.89 0.88 0.88 0.86 0.86 0.87 0.88 0.88 0.88 Average = Sum(40) 112 /12 = 0.88 Number of days in month (Table 1a)	(40)
Number of days in month (Table 1a)	(40)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
(41)m= 31 28 31 30 31 30 31 30 31 30 31	(41)
4. Water heating energy requirement: kWh/year:	
Assumed occupancy, N if TFA > 13.9, N = 1 + 1.76 x [1 - exp(-0.000349 x (TFA -13.9)2)] + 0.0013 x (TFA -13.9) if TFA £ 13.9, N = 1	(42)
Annual average hot water usage in litres per day Vd,average = (25 x N) + 36 Reduce the annual average hot water usage by 5% if the dwelling is designed to achieve a water use target of not more that 125 litres per person per day (all water use, hot and cold)	(43)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Hot water usage in litres per day for each month Vd,m = factor from Table 1c x (43)	
(44)m= 81.62 78.65 75.68 72.72 69.75 66.78 69.75 72.72 75.68 78.65 81.62	
$Total = Sum(44)_{112} = 890.$ Energy content of hot water used - calculated monthly = 4.190 x Vd, m x nm x DTm / 3600 kWh/month (see Tables 1b, 1c, 1d)	4 (44)
(45)m= 121.04 105.86 109.24 95.24 91.38 78.86 73.07 83.85 84.85 98.89 107.94 117.22	(45)
$Total = Sum(45)_{112} = 1167.$ If instantaneous water heating at point of use (no hot water storage), enter 0 in boxes (46) to (61)	46 (45)
(46)m= 18.16 15.88 16.39 14.29 13.71 11.83 10.96 12.58 12.73 14.83 16.19 17.58	(46)
Water storage loss:	
Storage volume (litres) including any solar or WWHRS storage within same vessel	(47)
If community heating and no tank in dwelling, enter 110 litres in (47)	-
Otherwise if no stored hot water (this includes instantaneous combi boilers) enter '0' in (47)	
Water storage loss: a) If manufacturer's declared loss factor is known (kWh/day):	(48)
Temperature factor from Table 2b	(49)
Energy lost from water storage, kWh/year $(48) \times (49) = 0$	(50)
b) If manufacturer's declared cylinder loss factor is not known:	(00)
Hot water storage loss factor from Table 2 (kWh/litre/day)	(51)
If community heating see section 4.3 Volume factor from Table 2a	
Volume factor from Table 2a 0 Temperature factor from Table 2b 0	(52) (53)
Energy lost from water storage, kwn/year $(47) \times (51) \times (52) \times (53) = 0$ Enter (50) or (54) in (55) 0	(54) (55)
Water storage loss calculated for each month $((56)m = (55) \times (41)m$	()
(56)m= 0 0 0 0 0 0 0 0 0 0 0 0 0	(56)
If cylinder contains dedicated solar storage, $(57)m = (56)m \times [(50) - (H11)] \div (50)$, else $(57)m = (56)m$ where (H11) is from Appendix H	()
(57)m= 0 0 0 0 0 0 0 0 0 0 0 0	(57)
Primary circuit loss (annual) from Table 3	(58)
Primary circuit loss calculated for each month (59)m = (58) \div 365 x (41)m	x/
(modified by factor from Table H5 if there is solar water heating and a cylinder thermostat)	
(59)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	(59)

Combi	loss ca	alculated	for ea	ch	month ((61)m =	(60	D) ÷ 36	65 × (41))m							
(61)m=	41.59	36.2	38.57	7	35.86	35.54	3	32.93	34.03	35.54	4 35.86	6	38.57	38.79	41.59	7	(61)
Total h	eat rec	uired for	water	he	ating ca	alculated	d fo	or eacl	n month	(62)m	i = 0.85 :	× (4	45)m +	(46)m +	(57)m ·	 + (59)m + (61)r	n
(62)m=	162.63	142.06	147.8	1	131.1	126.93	1	11.79	107.1	119.4	4 120.7	'1	137.46	146.73	158.81		(62)
Solar DH	-IW input	calculated	using A	ppe	endix G or	Appendi	хH	(negativ	ve quantity	/) (ente	'0' if no so	olar	contribu	tion to wate	er heating	g)	
(add a	dditiona	al lines if	FGHR	Sa	and/or V	WHR	S ap	oplies	see Ap	pendi	(G)					_	
(63)m=	0	0	0		0	0		0	0	0	0		0	0	0		(63)
Output	from v	vater hea	ter													_	
(64)m=	162.63	142.06	147.8	1	131.1	126.93	1	11.79	107.1	119.4	120.7	'1	137.46	146.73	158.81		_
										C	utput from	wat	ter heate	er (annual)	112	1612.53	(64)
Heat g	ains fro	om water	heatir	ng,	kWh/mo	onth 0.2	5 ´	[0.85	× (45)m	+ (61)m] + 0.8	8 x	[(46)m	ı + (57)m	+ (59)r	<u>m</u>]	
(65)m=	50.64	44.25	45.96	3	40.63	39.27	3	34.45	32.8	36.77	7 37.18	3	42.52	45.59	49.37		(65)
inclu	ide (57)m in calo	culatio	n o	f (65)m	only if a	cylii	nder is	s in the o	dwellir	ng or hot	wa	ater is f	rom com	munity	heating	
5. Int	ternal g	ains (see	e Table	e 5	and 5a)):											
Metab	olic gai	ns (Table	e 5), W	att	S										-		
	Jan	Feb	Ма	r	Apr	May		Jun	Jul	Au	g Sep	р	Oct	Nov	Dec	;	
(66)m=	84.21	84.21	84.21		84.21	84.21	٤	34.21	84.21	84.2	84.21	1	84.21	84.21	84.21		(66)
Ligh <mark>tin</mark>	g gains	s (calcula	ted in	Ap	pendix l	L, equa	tion	L9 oi	^r L9a), a	lso se	e Table	5					
(67)m=	1 <mark>3.08</mark>	11.62	9.45		7.15	5.35		<mark>4</mark> .51	4.88	6.34	8.51		10.8	12.61	13.44		(67)
App <mark>lia</mark>	nces ga	ains (ca <mark>lc</mark>	ulated	lin	Append	dix L, ec	Jua	tion L ²	13 o <mark>r L1</mark>	3a), a	so see T	Гab	ole <mark>5</mark>				
(68)m=	1 <mark>4</mark> 6.71	148.2 <mark>4</mark>	144.4	1	136.23	125.92	1	16.23	109.76	108.2	4 112.0	7	120.24	130.55	140.24		(68)
Cookir	ng gains	s (calcula	ated in	Ap	pendix	L, equa	tior	1 L15	or L15a)	, also	see Tab	ole :	5		-	_	
(69)m=	31.42	31.42	31.42	2	31.42	31.42	3	31.42	31.42	31.42	31.42	2	31.42	31.42	31.42		(69)
Pumps	and fa	ans gains	(Table	ə 5	a)												
(70)m=	3	3	3		3	3		3	3	3	3		3	3	3		(70)
Losses	s e.g. e	vaporatic	on (neg	gati	ve valu	es) (Tal	ble	5)			-				-	_	
(71)m=	-67.37	-67.37	-67.3	7	-67.37	-67.37	-	67.37	-67.37	-67.3	7 -67.3	7	-67.37	-67.37	-67.37		(71)
Water	heating	g gains (T	able 5	5)							-			-	-	_	
(72)m=	68.07	65.85	61.78	3	56.43	52.78	4	17.85	44.09	49.42	2 51.64	4	57.15	63.32	66.36		(72)
Total i	nterna	l gains =	:					(66)	m + (67)m	ı + (68)	m + (69)m	+ (7	70)m + (1	71)m + (72)	-)m	_	
(73)m=	279.13	276.97	266.8	9	251.08	235.32	2	19.86	209.99	215.2	6 223.4	.8	239.46	257.74	271.31	7	(73)
6. So	lar gain	is:															
Solar g	ains are	calculated	using so	olar	flux from	Table 6a	and	l associ	ated equa	tions to	convert to	b the	e applica	ble orientat	tion.		
Orienta		Access F			Area			Flu			g_ Table C	` L	-	FF		Gains	
		Table 6d			m²			1 at	ole 6a		Table 6	30	ا — _	Table 6c		(W)	_
	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	3	6.79	×	0.63		×	0.7	=	26.09	(77)
Southe		0.77		x	2.3	32	x	6	2.67	×	0.63		_ × [0.7	=	44.44	(77)
Southe		0.77		x	2.3	32	x	8	5.75	x	0.63		_ × [0.7	=	60.8	(77)
	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	10	06.25	x	0.63		_ × [0.7	=	75.33	(77)
Southe	ast <mark>0.9x</mark>	0.77		x	2.3	32	x	1	19.01	x	0.63		x	0.7	=	84.38	(77)

											_					
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	1	18.15	x	0.63	x	0.7		=	83.77	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	113.91		x	0.63	x	0.7		=	80.76	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	10	04.39	x	0.63	x	0.7		=	74.02	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	9	2.85	x	0.63	x	0.7		=	65.83	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	6	9.27	x	0.63	×	0.7		=	49.11	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	4	4.07	x	0.63	x	0.7		=	31.25	(77)
Southe	ast <mark>0.9x</mark>	0.77	x	2.3	32	x	3	1.49	x	0.63	×	0.7		=	22.33	(77)
Southw	est <mark>0.9x</mark>	0.77	x	10.	13	x	3	6.79	İ	0.63	x	0.7		=	113.91	(79)
Southw	est <mark>0.9x</mark>	0.77	x	10.	13	x	6	2.67	1	0.63	x	0.7		=	194.03	(79)
Southw	est <mark>0.9x</mark>	0.77	x	10.	13	x	8	5.75	İ	0.63	x	0.7		=	265.48	(79)
Southw	est <mark>0.9x</mark>	0.77	x	10.	13	x	10	06.25	1	0.63	×	0.7		=	328.94	(79)
Southw	est <mark>0.9x</mark>	0.77	x	10.	13	x		19.01	1	0.63	×	0.7		=	368.44	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	1	18.15	İ	0.63	×	0.7		=	365.78	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	1	13.91		0.63	×	0.7		=	352.65	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	1	04.39]	0.63	×	0.7		=	323.18	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	9	2.85		0.63	×	0.7		=	287.46	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	6	9.27		0.63	×	0.7		=	214.44	(79)
Sout <mark>hw</mark>	est0.9x	0.77	×	10.	13	x	4	4.07		0.63	x	0.7		=	136.44	(79)
Southw	est <mark>0.9x</mark>	0.77	×	10.	13	x	3	31.49	i	0.63	x	0.7		-	97.48	(79)
Solar gains in watts, calculated for each month $(83)m = Sum(74)m \dots (82)m$																
Color	noine in i		aulata d	for cool	h month	h			(02)	$C_{\rm H} = (7.4) m$	(00)					
~		1 1	1			_	49 55		r		× ′	167.68	119	81		(83)
(83)m=	140	238.47	326.28	404.27	452.82	4	49.55 83)m	433.41	<mark>(83)m</mark> 397		(8 <mark>2)m</mark> 263.5	5 167.68	119	.81		(83)
(83)m= Total g	140 Jains — ir	238.47	326.28 d solar	404.27 (84)m =	452.82 = (73)m	44 + (8	83)m	433.41 , watts	397	19 353.29	263.5		I			
(83)m= Total g (84)m=	140 ains — ir 419.12	238.47 ; nternal an 515.43 ;	326.28 d solar 593.17	404.27 (84)m = 655.36	452.82 = (73)m 688.14	44 + (8		433.41	r	19 353.29	× ′		119 391			(83) (84)
(83)m= Total g (84)m= 7. Me	140 Jains – ir 419.12 Jan inter	238.47 : nternal an 515.43 : nal tempe	32 <mark>6.28 d solar</mark> 593.17 rature (404.27 (84)m = 655.36 (heating	452.82 = (73)m 688.14 seasor	44 + (8 60	83)m 69.41	433.41 , watts 643.4	397 612	19 353.29 45 576.77	263.5		I			(84)
(83)m= Total g (84)m= 7. Me Temp	140 ains – ir 419.12 an inter perature	238.47 nternal an 515.43 nal tempe during he	326.28 d solar 593.17 rature ating po	404.27 (84)m = 655.36 (heating eriods in	452.82 = (73)m 688.14 season the liv	44 + (8 60 n)	83)m 69.41 area 1	433.41 , watts 643.4 from Tab	397 612	19 353.29 45 576.77	263.5		I		21	
(83)m= Total g (84)m= 7. Me Temp	140 Jains – II 419.12 Jan inter perature ation fac	238.47	326.28 d solar 593.17 rature ating po ns for li	404.27 (84)m = 655.36 (heating eriods in iving are	452.82 = (73)m 688.14 season the liv ea, h1,r	44 + (8 60 n) ring m (so	83)m 69.41 area f ee Ta	433.41 , watts 643.4 from Tab ble 9a)	397 612 ble 9,	19 353.29 45 576.77 Th1 (°C)	263.5	2 425.43	391	.12	21	(84)
(83)m= Total g (84)m= 7. Me Temp Utilisa	140 Jains – ir 419.12 an inter perature ation fac Jan	238.47 nternal an 515.43 nal tempe during hea tor for gain Feb	326.28 d solar 593.17 rature (ating po ns for li Mar	404.27 (84)m = 655.36 (heating eriods in iving are Apr	452.82 = (73)m 688.14 season the liv ea, h1,r May	4. + ({ 60 n) ring m (so	83)m 69.41 area f ee Ta Jun	433.41 , watts 643,4 from Tab ble 9a) Jul	397 612 ble 9,	19 353.29 45 576.77 Th1 (°C) Jg Sep	263.50 503.00	2 425.43 Nov	391	.12 ec	21	(84)
(83)m= Total g (84)m= 7. Me Temp	140 Jains – II 419.12 Jan inter perature ation fac	238.47	326.28 d solar 593.17 rature ating po ns for li	404.27 (84)m = 655.36 (heating eriods in iving are	452.82 = (73)m 688.14 season the liv ea, h1,r	4. + ({ 60 n) ring m (so	83)m 69.41 area f ee Ta	433.41 , watts 643.4 from Tab ble 9a)	397 612 ble 9,	19 353.29 45 576.77 Th1 (°C) Jg Sep	263.5	2 425.43	391	.12 ec	21	(84)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean	140 Jains – Ii 419.12 Derature ation fac Jan 0.99 Interna	238.47 internal and 515.43 nal tempe during head tor for gain Feb 0.96 I temperat	326.28 d solar 593.17 rature (ating po ns for li Mar 0.89 ture in l	404.27 (84)m = 655.36 (heating eriods ir iving are Apr 0.76 iving are	452.82 = (73)m 688.14 season n the liv ea, h1,r May 0.58 ea T1 (f	44 + (8 60 n) ring n (so	83)m 69.41 area f ee Ta Jun 0.41	433.41 , watts 643,4 from Tat ble 9a) Jul 0.29	397 612 ble 9, Au 0.3	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51	263.53 503.02 Oct 0.81	2 425.43 Nov 0.97	391	.12 ec	21	(84) (85) (86)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m=	140 Jains – ir 419.12 an inter perature ation fac Jan 0.99	238.47 internal and 515.43 nal tempe during head tor for gain Feb 0.96 I temperat	326.28 d solar 593.17 rature (ating points for ling Mar 0.89	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58	44 + (8 60 n) ring n (so	83)m 69.41 area f ee Ta Jun 0.41	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29	397 612 ble 9, Au 0.3	19 353.29 45 576.77 Th1 (°C)	263.50 503.00	2 425.43 Nov 0.97	391	.12 ec	21	(84)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m=	140 Jains – Ii 419.12 Jan inter ation fac Jan 0.99 interna 20.35	238.47 anternal and 515.43 and tempe during head tor for gain Feb 0.96 I temperat 20.56	326.28 d solar 593.17 rature (ating point ns for li Mar 0.89 ture in l 20.78	404.27 (84)m = 655.36 (heating eriods ir iving are Apr 0.76 iving are 20.93	452.82 = (73)m 688.14 season n the liv ea, h1,r May 0.58 ea T1 (f 20.99	44 + (((60 n) m (so follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21	433.41 , watts 643.4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21	397 612 0le 9, 0.3 7 in T 2	19 353.29 45 576.77 Th1 (°C)	263.53 503.02 Oct 0.81	2 425.43 Nov 0.97	391	.12 ec	21	(84) (85) (86)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m=	140 Jains – Ii 419.12 Jan inter ation fac Jan 0.99 interna 20.35	238.47 anternal and 515.43 anal tempe during hea tor for gain Feb 0.96 I temperat 20.56 during hea	326.28 d solar 593.17 rature (ating point ns for li Mar 0.89 ture in l 20.78	404.27 (84)m = 655.36 (heating eriods ir iving are Apr 0.76 iving are 20.93	452.82 = (73)m 688.14 season n the liv ea, h1,r May 0.58 ea T1 (f 20.99	44 + (8 60 n) ing n (se follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21	433.41 , watts 643.4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21	397 612 0le 9, 0.3 7 in T 2	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C)	263.53 503.02 Oct 0.81	2 425.43 Nov 0.97 20.61	391	.12 ec 99	21	(84) (85) (86)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m=	140 Jains – ir 419.12 an inter perature ation fac Jan 0.99 interna 20.35 perature 20.17	238.47anternal and515.43and tempeduring heatduring heattor for gainFeb0.96I temperat20.56during heat20.17	326.28 d solar 593.17 rature (ating p ns for li Mar 0.89 ture in l 20.78 ating p 20.18	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76 iving are 20.93 eriods in 20.19	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19	44 + (8 60 n) ing n (se follo	83)m 69.41 area 1 ee Ta Jun 0.41 w ste 21 velling 20.2	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2	397 612 612 612 612 612 0.3 7 in T 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C)	263.53 503.02 Oct 0.81 20.91	2 425.43 Nov 0.97 20.61	391 D 0.9	.12 ec 99	21	(84) (85) (86) (87)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m=	140 Jains – ir 419.12 an inter perature ation fac Jan 0.99 interna 20.35 perature 20.17	238.47 anternal and 515.43 anal tempe during heat tor for gain Feb 0.96 I temperat 20.56 during heat during heat	326.28 d solar 593.17 rature (ating p ns for li Mar 0.89 ture in l 20.78 ating p 20.18	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76 iving are 20.93 eriods in 20.19	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19	44 + (8 6 n) ing n (s follo follo f dw	83)m 69.41 area 1 ee Ta Jun 0.41 w ste 21 velling 20.2	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2	397 612 612 612 612 612 0.3 7 in T 2 8 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 20.19	263.53 503.02 Oct 0.81 20.91	2 425.43 Nov 0.97 20.61	391 D 0.9	.12 ec 99 .3	21	(84) (85) (86) (87)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	140 ains – ir 419.12 an inter erature ation fac Jan 0.99 interna 20.35 erature 20.17 ation fac 0.98	238.47anternal and515.43and tempeduring headduring headetor for gainFeb0.961 temperate20.56during head20.17etor for gain0.95	326.28 d solar 593.17 rature (ating points for line Mar 0.89 ture in l 20.78 ating points 20.18 ns for r 0.87	404.27 (84)m = 655.36 (heating eriods ir iving are 0.76 iving are 20.93 eriods ir 20.19 est of do 0.72	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53	44 + (§ 60 n) n (se follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 ,m (se 0.36	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24	397 612 ble 9, Ai 0.3 7 in T 2 able § 20. 9a) 0.2	19 353.29 45 576.77 Th1 (°C) ug Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46	263.53 503.02 503.02 0.81 20.91 20.19 20.19	2 425.43 Nov 0.97 20.61 20.18	391 D 0.9 20.	.12 ec 99 .3	21	(84) (85) (86) (87) (88)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean	140jains – in419.12an interperatureation facJan0.99interna20.35perature20.17ation fac0.98interna	238.47anternal and515.43and tempeduring heatduring heattor for gainFeb0.96I temperate20.56during heat20.17ctor for gain0.95I temperate	326.28 d solar 593.17 rature (ating pr ns for li Mar 0.89 ture in l 20.78 ating pr 20.18 ns for r 0.87 ture in t	404.27 (84)m = 655.36 (heating eriods in iving are Apr 0.76 iving are 20.93 eriods in 20.19 est of dv 0.72 the rest	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwel	44 + ({ 66 n) ing n (se follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 ,m (se 0.36 T2 (fe	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 ollow ste	397 612 612 612 612 0.3 7 in T 2 0.3 90 0.2 90 90 0.2	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46 to 7 in Table	263.53 503.02 0.81 20.91 20.19 0.77 e 9c)	2 425.43 Nov 0.97 20.61 20.18 0.96	391 D 0.9 20. 0.9	.12 ec 99 .3 18	21	(84) (85) (86) (87) (88) (88) (89)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m=	140 ains – ir 419.12 an inter erature ation fac Jan 0.99 interna 20.35 erature 20.17 ation fac 0.98	238.47anternal and515.43and tempeduring heatduring heattor for gainFeb0.96I temperate20.56during heat20.17ctor for gain0.95I temperate	326.28 d solar 593.17 rature (ating points for line Mar 0.89 ture in l 20.78 ating points 20.18 ns for r 0.87	404.27 (84)m = 655.36 (heating eriods ir iving are 0.76 iving are 20.93 eriods ir 20.19 est of do 0.72	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53	44 + ({ 66 n) ing n (se follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 ,m (se 0.36	433.41 , watts 643,4 from Tab ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24	397 612 ble 9, 0.3 7 in T 2 20. 9a) 0.2	19 353.29 45 576.77 Th1 (°C)	263.53 503.02 0.02 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96 19.7	391 0.9 20. 20. 19.	.12 ec 99 .3 18		 (84) (85) (86) (87) (88) (89) (90)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m=	140Jains – in419.12an interan interation facJan0.99interna20.35perature20.17ation fac0.98interna19.32	238.47anternal and515.43and temperduring headetor for gainFeb0.96I temperate20.56during head20.17etor for gain0.95I temperate19.62	326.28 d solar 593.17 rature ating persistent ns for li Mar 0.89 ture in l 20.78 ating persistent 20.18 ns for r 0.87 ture in t 19.92	404.27 (84)m = 655.36 (heating eriods ir iving are 0.76 iving are 20.93 eriods ir 20.19 est of dv 0.72 the rest 20.12	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwel 20.18	44 + ({ 60 n) ing n (s follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 ,m (se 0.36 T2 (fe 20.2	433.41 , watts 643,4 from Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 ollow ste 20.2	397 612 612 612 0.3 7 in T 2 able § 20 9a) 0.2 eps 3 20.	19 353.29 45 576.77 Th1 (°C) Jg Sep 2 0.51 able 9c) 21 0, Th2 (°C) 2 2 0.46 to 7 in Tabl 2 2 20.19 7 0.46 to 7 in Tabl 2 2 20.19	263.53 503.02 0.02 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96	391 0.9 20. 20. 19.	.12 ec 99 .3 18	0.47	(84) (85) (86) (87) (88) (88) (89)
(83)m= Total g (84)m= 7. Me Temp Utilisa (86)m= Mean (87)m= Temp (88)m= Utilisa (89)m= Mean (90)m=	140Jains – in419.12an interan interation facJan0.99interna20.35perature20.17ation fac0.98interna19.32	238.47anternal and515.43and temperduring heatduring heattor for gainFeb0.96I temperat20.56during heat20.17tor for gain0.95I temperat19.62I temperat	326.28 d solar 593.17 rature ating persistent ns for li Mar 0.89 ture in l 20.78 ating persistent 20.18 ns for r 0.87 ture in t 19.92	404.27 (84)m = 655.36 (heating eriods ir iving are 0.76 iving are 20.93 eriods ir 20.19 est of dv 0.72 the rest 20.12	452.82 = (73)m 688.14 season the liv ea, h1,r May 0.58 ea T1 (f 20.99 n rest of 20.19 welling, 0.53 of dwel 20.18	44 + (8 6 n) ing n (su follo	83)m 69.41 area f ee Ta Jun 0.41 w ste 21 velling 20.2 ,m (se 0.36 T2 (fe 20.2	433.41 , watts 643,4 from Tak ble 9a) Jul 0.29 ps 3 to 7 21 from Ta 20.2 ee Table 0.24 ollow ste 20.2	397 612 612 612 0.3 7 in T 2 able § 20 9a) 0.2 eps 3 20.	19 353.29 19 353.29 45 576.77 Th1 (°C) Jg Jg Sep 2 0.51 able 9c) 21 9, Th2 (°C) 2 2 0.19 7 0.46 to 7 in Tabl 2 2 20.19 f - fLA) × T2	263.53 503.02 0.02 20.91 20.19 0.77 e 9c) 20.1	2 425.43 Nov 0.97 20.61 20.18 0.96 19.7 ring area ÷ (391 0.9 20. 20. 19.	.12 ec 99 .3 18 99 26		 (84) (85) (86) (87) (88) (89) (90)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m= 19.8 20.06 20.32 20.5 20.56 20.57 20.57 20.57 20.48 20.12 19.75 2 Space booting requirement	(93)									
8. Space heating requirement										
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a										
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	:									
Utilisation factor for gains, hm:										
(94)m= 0.98 0.95 0.87 0.73 0.55 0.38 0.27 0.29 0.48 0.79 0.95 0.99	(94)									
Useful gains, hmGm , $W = (94)m \times (84)m$	-									
(95)m= 411.37 488.43 518.72 479.89 381.6 256.86 171.09 179.31 278.38 396.32 405.91 385.93	(95)									
Monthly average external temperature from Table 8	_									
(96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.6 16.4 14.1 10.6 7.1 4.2	(96)									
Heat loss rate for mean internal temperature, Lm , W =[(39)m x [(93)m– (96)m]	_									
(97)m= 690.84 673.92 612.37 507.02 386.15 257.22 171.12 179.36 279.87 430.8 570.78 685.06	(97)									
Space heating requirement for each month, kWh/month = 0.024 x [(97)m - (95)m] x (41)m	-									
(98)m= 207.93 124.65 69.67 19.53 3.38 0 0 0 0 25.66 118.7 222.56	; 									
Total per year (kWh/year) = Sum(98) _{15,912}	= 792.09 (98)									
Space heating requirement in kWh/m²/year	15.91 (99)									
9a. Energy requirements – Individual heating systems including micro-CHP)										
Space heating:										
Fraction of space heat from secondary/supplementary system	0 (201)									
Fraction of space heat from main system(s) (202) = 1 - (201) =	1 (202)									
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	1 (204)									
Efficiency of main space heating system 1	93.4 (206)									
Efficiency of secondary/supplementary heating system, %	0 (208)									
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	kWh/year									
Space heating requirement (calculated above)	-									
207.93 124.65 69.67 19.53 3.38 0 0 0 0 25.66 118.7 222.56	5									
(211)m = {[(98)m x (204)] } x 100 ÷ (206)	(211)									
222.62 133.46 74.6 20.91 3.62 0 0 0 27.47 127.09 238.29)									
Total (kWh/year) =Sum(211) _{15,1012} =	848.06 (211)									
Space heating fuel (secondary), kWh/month										
= {[(98)m x (201)] } x 100 ÷ (208)	-									
(215)m= 0 0 0 0 0 0 0 0 0 0 0 0 0 0										
Total (kWh/year) =Sum(215) _{15,1012} =	0 (215)									
Water heating										
Output from water heater (calculated above)	-									
162.63 142.06 147.81 131.1 126.93 111.79 107.1 119.4 120.71 137.46 146.73 158.81										
Efficiency of water heater	80.3 (216)									
(217)m= 85.67 84.72 83.28 81.48 80.53 80.3 80.3 80.3 80.3 81.74 84.52 85.9	(217)									
Fuel for water heating, kWh/month										
$(219)m = (64)m \times 100 \div (217)m$ $(219)m = 189.83 \ 167.68 \ 177.48 \ 160.9 \ 157.61 \ 139.22 \ 133.38 \ 148.69 \ 150.33 \ 168.17 \ 173.6 \ 184.88$										
$(219)\text{ff} = \frac{189.83}{107.68} \frac{107.68}{177.48} \frac{177.61}{100.9} \frac{157.61}{139.22} \frac{133.38}{139.22} \frac{148.69}{150.33} \frac{150.33}{108.17} \frac{168.17}{173.6} \frac{184.88}{184.88}$ $\text{Total} = \text{Sum}(219a)_{1.12} =$										
	1951.76 (219)									
Annual totals kWh/year Space heating fuel used, main system 1	kWh/year 848.06									
	0-0.00									

					1
Water heating fuel used				1951.76	
Electricity for pumps, fans and electric keep-hot					
central heating pump:			30]	(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year			75	(231)	
Electricity for lighting				230.99	(232)
12a. CO2 emissions – Individual heating systems	including micro-C	CHP			-
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	183.18	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	421.58	(264)
Space and water heating	(261) + (262) + (263	3) + (264) =		604.76	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	38.93	(267)
Electricity for lighting	(232) x	0.519	=	119.88	(268)
Total CO2, kg/year TER =		sum of (265)(271) =		763.57 15.33	(272)

User Details:												
Assessor Name: Software Name:	ftware Name: Stroma FSAP 2012					Stroma Number: Software Version: Versio perty Address: Flat 1						
Addross I	1 Bed Flat, 219-223					nh lunct	tion I ON					
Address : 1. Overall dwelling dimer		Columan		ne, Loug	μηροιοαί	JII JUIICI						
Ground floor			Area 5		(1a) x	Av. He	ight(m) 2.5	(2a) =	Volume(m ³) 129.25	(3a)		
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 51.7 (4)												
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	129.25	(5)		
2. Ventilation rate:												
Number of chimneys Number of open flues		econdary neating 0 0	/ · · · · · · · · · · · · · · · · · · ·	0 0 0] = [] = [total 0 0		40 = 20 =	m ³ per hour	(6a) (6b)		
Number of intermittent fan	s		J L		' F	0	x	0 =	0	 _(7a)		
Number of passive vents						0	x ^	0 =	0](7b)		
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)		
Air ch										changes per hour		
Infiltration due to chimneys If a pressurisation test has be Number of storeys in the Additional infiltration Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	en carried out or is intende e dwelling (ns) 25 for steel or timber esent, use the value corres	ed, proceed frame or	to (17), o 0.35 for	therwise c masonr	y constr		(16)	÷ (5) = •1]x0.1 =	0 0 0 0	(9) (10) (11)		
deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0										(12)		
If no draught lobby, ente	er 0.05, else enter 0								0	(13)		
Percentage of windows and doors draught stripped										(14)		
Window infiltration				0.25 - [0.2		0	(15)					
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$									0	(16)		
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area									2	(17)		
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ <i>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used</i> (18)										(18)		
Number of sides sheltered		s been done	e or a deg	iee all per	Πεαρπιτγ	s being us	360		2	(19)		
Shelter factor $(20) = 1 - [0.075 \times (19)] =$									0.85	(20)		
Infiltration rate incorporating shelter factor (21) = (18) x (20) =									0.08	(21)		
Infiltration rate modified fo	r monthly wind speed	b						•		_		
Jan Feb M	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec				
Monthly average wind spe	ed from Table 7											
(22)m= 5.1 5 4	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7				
Wind Factor (22a)m = (22)m ÷ 4											
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18				

Adjust	ed infiltr	ation rat	e (allowi	ng for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
	late effe echanica		-	rate for t	the appli	cable ca	se						0.5	(23a)
				endix N. (2	23b) = (23a) x Fmv (e	equation (N	N5)), othe	rwise (23b) = (23a)			0.5	(23a)
					allowing f					, (,			0.5	(230) (23c)
			-	-	with hea					2h)m + (23h) v ['	1 – (23c)	73.1 ÷ 1001	(230)
(24a)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23]	(24a)
					without								1	
(24b)m=				0					0		0	0	1	(24b)
			tract ver	tilation (or positiv		/entilatio	n from c	utside				l	
					c) = (23b	-				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from l	oft				1	
	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	rwise (2	4d)m = (0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
	r	<u> </u>		· · · · · · · · · · · · · · · · · · ·) or (24b	, ,	, ,	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1	1	1	
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	oaramet	er:									
	NENT	Gros		Openir	-	Net Ar		U-valu		AXU		k-value		AXk
\A/' - 1-	. . .	area	(m²)	n	1 ²	A ,r		W/m2		(W/I	K)	kJ/m²·l	K	kJ/K
	ws Type					10.35		[1/(0.73)-	Ļ	7.34				(27)
	ws Type	e 2				4.51		[1/(0.73)+	+ 0.04] =	3.2	닐 .			(27)
Floor						51.7	×	0.06	=	3.102				(28)
Walls	Type1	19.7	75	10.3	5	9.4	X	0.15	= [1.41				(29)
Walls	Type2	14.7	75	4.51		10.24	x	0.15	=	1.54				(29)
Walls	Туре3	20)	0		20	x	0.15	=	3				(29)
Total a	area of e	elements	, m²			106.2	2							(31)
Party	wall					20	x	0	=	0				(32)
Party	ceiling					51.7								(32b)
Interna	al wall **					77								(32c)
					indow U-va Ils and part		ated using	formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	n 3.2	
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)	+ (32) =				19.59	(33)
Heat c	apacity	Cm = S((A x k)						((28)	(30) + (32	2) + (32a).	(32e) =	11299.9	9 (34)
Therm	al mass	parame	eter (TMF	P = Cm -	÷ TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-		ere the de tailed calc		e constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						7.96	(36)
	s of therma abric he		are not kn	own (36) :	= 0.05 x (3	1)			(33) ±	(36) =			07 55	(27)
			alculated	month	v						25)m x (5)		27.55	(37)
v Gritik	Jan	Feb	Mar	Apr	y May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
	Jun				Interv	Jun		, lug					I	

(38)m=	10.36	10.27	10.18	9.72	9.63	9.18	9.18	9.09	9.36	9.63	9.82	10		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	37.91	37.82	37.73	37.27	37.18	36.73	36.73	36.64	36.91	37.18	37.36	37.54		
Heat lo	iss nara	meter (I	HLP), W	/m²K						Average = = (39)m ÷		12 /12=	37.25	(39)
(40)m=	0.73	0.73	0.73	0.72	0.72	0.71	0.71	0.71	0.71	0.72	0.72	0.73		
		1	ļ						, ,	Average =	Sum(40)1.	12 /12=	0.72	(40)
Numbe		r	nth (Tab	, 1										
(11)	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		(41)
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4 \//0	tor boot	ting one		iromonti								k) Mb /vo	05	
4. vva	ter nea	ung ene	rgy requ	irement.								kWh/ye	ar.	
		ipancy,	N + 1.76 x	[1 ovp	(0 0003		- 12 0) <u>))))</u>	1012 v (*	TEA 12		74		(42)
	A £ 13.9		+ 1.70 X	li - exh	(-0.0003	949 X (11	-A - 13.9)2)] + 0.0	JU13 X (IFA - 13.	9)			
			ater usag							a targat a		.53		(43)
		-	hot water person pe			-	-	o achieve	a water us	se largel o	1			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	e <mark>r u</mark> sage i	n litres pe	r day for ea				Table 1c x	<u> </u>						
(44)m=	<mark>8</mark> 3.08	80.06	77.04	74.02	71	67.98	67. <mark>98</mark>	71	74.02	77.04	80.06	<mark>8</mark> 3.08		
Eporou	contant of	bot water	used - cal	aulated m	opthly - A	100 v Vd r		Tm / 2600		Total = Su			906.36	(44)
	123.21	107.76	111.2	96.95	93.02	80.27	74.38	85.36	86.37	100.66	109.88	119.32		
(45)m=	123.21	107.76	111.2	90.95	93.02	00.27	74.30	00.00		Total = Su		L	1188.38	(45)
lf instant	aneous w	vater heati	ing at point	of use (no	o hot water	r storage),	enter 0 in	boxes (46				L		`
(46)m=	18.48	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
	storage) includir		alar or M		storado	within er		sol				(47)
) includir and no ta							501		0		(47)
	•	-	hot wate		-			. ,	ers) ente	er '0' in (47)			
	storage													
			eclared I		or is kno	wn (kWł	n/day):					0		(48)
			om Table					(40) (40)				0		(49)
			r storage eclared o	•		or is not		(48) x (49)) =			0		(50)
Hot wa	ter stor	age loss	factor fr	om Tabl								0		(51)
	•	eating s from Ta	see secti	on 4.3]		(50)
			om Table	2b								0 0		(52) (53)
-			r storage		ear			(47) x (51)) x (52) x (53) =		0		(54)
		(54) in (ধ	-									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	r contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	хH	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circu Primary circu	•	,			59)m = ((58) ÷ 36	65 × (41)	m			0		(58)		
(modified b	y factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	a cylinde	r thermo	stat)					
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)		
Combi loss ca	alculated	for each	month	(61)m =	(60) ÷ 30	65 × (41)m								
(61)m= 11.77	10.62	11.74	11.35	11.72	11.32	11.69	11.71	11.34	11.73	11.37	11.76		(61)		
Total heat red	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 ×	(45)m +	(46)m +	(57)m +	, (59)m + (61)r	n		
(62)m= 134.98	118.38	122.94	108.29	104.74	91.59	86.07	97.06	97.71	112.39	121.25	131.09		(62)		
Solar DHW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)	I			
(add addition	al lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)							
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)		
Output from w	vater hea	iter	-				-	-		-	-	'			
(64)m= 134.98	118.38	122.94	108.29	104.74	91.59	86.07	97.06	97.71	112.39	121.25	131.09				
	Output from water heater (annual) 1326.51 (64) Heat gains from water heating, kWh/month 0.25 $(0.85 \times (45)m + (61)m] + 0.8 \times [(46)m + (57)m + (59)m]$														
Heat gains fro	om water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	n + (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]			
(65)m= 43.91	38.49	39.91	35.07	33.86	29.52	27.66	31.31	31.55	36.4	39.38	42.62		(65)		
include (57)m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating			
5. Internal g	ains (see	e Table {	5 and 5a):											
Met <mark>abolic</mark> gai	ns (Table	e 5), Wat	tts												
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec				
(66)m= 87.01	87.01	87 .01	87.01	87.01	87.01	87.01	87.01	87.01	8 <mark>7.01</mark>	87.01	87.01		(66)		
Lighting gains	s (calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see [:]	Table 5							
(67)m= 18.24	16.2	13.18	9.98	7.46	6.3	6.8	8.84	11.87	15.07	17.59	18.75		(67)		
Appliances ga	ains (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5						
(68)m= 151.65	153.22	149.26	140.81	130.16	120.14	113.45	111.88	115.84	124.28	134.94	144.96		(68)		
Cooking gain	s (calcula	ated in A	ppendix	L, equa	tion L15	or L15a), also se	ee Table	5			I			
(69)m= 31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7		(69)		
Pumps and fa	ans gains	(Table :	5a)									I			
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)		
Losses e.g. e	vaporatio	n (nega	tive valu	es) (Tab	le 5)							I			
(71)m= -69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61		(71)		
Water heating	gains (1	rable 5)	1									I			
(72)m= 59.02	57.27	53.64	48.71	45.51	41	37.17	42.08	43.82	48.93	54.69	57.28		(72)		
Total interna	l gains =				(66)	ı)m + (67)n	י 1 + (68)m -	+ (69)m +	(70)m + (7	1)m + (72)	m]			
(73)m= 281.01	278.8	268.18	251.6	235.23	219.54	209.53	214.9	223.64	240.39	259.32	273.09		(73)		
6. Solar gair	IS:														
Solar gains are	calculated	using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	ne applicat	le orientat	ion.				
Orientation:	Access F	actor	Area		Flu	IX		g_		FF		Gains			

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9>	0.77	x	4.51	x	11.28	×	0.63	x	0.1	=	2.22	(75)
Northeast 0.9>	0.77	x	4.51	x	22.97	×	0.63	×	0.1	=	4.52	(75)

		_					-						
Northeast 0.9	0.11	x	4.51		x	41.38	x	0.63	x	0.1	=	8.15	(75)
Northeast 0.9	0.77	x	4.51		X (67.96	x	0.63	x	0.1	=	13.38	(75)
Northeast 0.9	0.77	x	4.51		x g	91.35	x	0.63	x	0.1	=	17.99	(75)
Northeast 0.9	0.77	x	4.51		x g	97.38	x	0.63	x	0.1	=	19.18	(75)
Northeast 0.9	0.77	x	4.51		x	91.1	x	0.63	x	0.1	=	17.94	(75)
Northeast 0.9	0.77	x	4.51		x	72.63	x	0.63	x	0.1	=	14.3	(75)
Northeast 0.9	0.77	x	4.51		x !	50.42	x	0.63	x	0.1	=	9.93	(75)
Northeast 0.9	0.77	×	4.51		×	28.07	x	0.63	x	0.1	=	5.53	(75)
Northeast 0.9	0.77	x	4.51		x	14.2	x	0.63	x	0.1	=	2.8	(75)
Northeast 0.9	0.77	x	4.51		x	9.21	x	0.63	x	0.1	=	1.81	(75)
Southwest0.9	0.77	x	10.35	;	x;	36.79]	0.63	x	0.1	=	16.63	(79)
Southwest0.9	0.77	x	10.35	;	x (62.67]	0.63	x	0.1	=	28.32	(79)
Southwest0.9	0.77	x	10.35	;	x t	35.75]	0.63	x	0.1	=	38.75	(79)
Southwest0.9	0.77	×	10.35	;	× 1	06.25]	0.63	x	0.1	=	48.01	(79)
Southwest0.9	0.77	x	10.35	;	× 1	19.01]	0.63	x	0.1	=	53.78	(79)
Southwest0.9	0.77	x	10.35	;	× 1	18.15]	0.63	x	0.1	=	53.39	(79)
Southwest0.9	0.77	x	10.35	;	× 1	13.91]	0.63	x	0.1	=	51.47	(79)
Southwest0.9	0.77	x	10.35	;	× 1	04.39		0.63	x	0.1	=	47.17	(79)
Southwest0.9	0.77	×	10.35	;	x	92.85		0.63	x	0.1	-	41.96	(79)
Sout <mark>hwest</mark> 0.9	0.77	×	10.35	;	×	69.27		0.63	x	0.1	=	31.3	(79)
Sout <mark>hwest</mark> 0.9	0.77	x	10.35	;	×	44.07		0.63	x	0.1	=	19.91	(79)
Sout <mark>hwest</mark> 0.9	0.77	×	10.35		x :	31.4 <mark>9</mark>	1	0.63	x	0.1	_ =	14.23	(79)
Sola <mark>r gains i</mark>	n watts, calcu	ulated	for each	month			(83)m	= Sum(74)m .	<mark>(8</mark> 2)m				
(<mark>83)m=</mark> 18.85	32.84	46.9	61.39	71.76	72.56	69.41	61.	47 51.88	36.83	22.71	16.04		(83)
Total gains -	internal and	solar	(84)m = ((73)m +	+ (83)m	, watts							
(84)m= 299.8	6 311.64 3 ⁻	15.08	313	306.99	292.11	278.94	276	.37 275.52	277.21	282.03	289.13		(84)
7. Mean int	ernal tempera	ature	(heating s	eason))								
Temperatu	e during hea	iting p	eriods in t	the livir	ng area	from Tab	ole 9	Th1 (°C)				21	(85)
Utilisation fa	actor for gain	s for l	iving area	i, h1,m	(see Ta	able 9a)							
Jan	Feb	Mar	Apr	May	Jun	Jul	A	ug Sep	Oct	Nov	Dec		
(86)m= 1	1 (0.99	0.98	0.93	0.77	0.58	0.	6 0.84	0.97	1	1		(86)
Mean interr	al temperatu	ure in l	iving area	a T1 (fo	ollow ste	eps 3 to 7	7 in T	able 9c)					
(87)m= 20.34	<u> </u>	20.54	<u> </u>	20.88	20.98	21	2		20.77	20.53	20.33		(87)
Temperatu	e during hea	tina n	eriods in i	rest of a	dwelling	i from Ta	hle 9						
(88)m= 20.31		20.31	1	20.32	20.33	20.33	20.		20.32	20.32	20.32		(88)
	-11			I		Į	I	I	L		L	I	
(89)m = 1	actor for gain	0.99	0.97	0.9	12,m (se 0.7	0.49	9a) 0.5	0.79	0.96	0.99	1		(89)
					-	Į				0.35			(00)
	al temperatu	i	1	1	- ·	1	r –	1	,	4.5-	46.5	l	(00)
(90)m= 19.42	19.53 1	9.71	19.97	20.2	20.32	20.33	20.		20.05	19.7 ring area ÷ (4	19.4	a –	(90)
								T	LA = LIV	mu area ÷ (4	+/ =	0.5	(91)

Maaa			atura lta	ماريد مرماند م	مام مابيم	11:m m) f	I A TA	. / 4 4	A) TO					
(92)m=	19.89	19.97	ature (fo	20.34	20.54	1110() = 1100()	20.67	+ (1 – 1L 20.67	20.63	20.41	20.12	19.87		(92)
			he mean								20.12	10.07		(02)
(93)m=	19.74	19.82	19.98	20.19	20.39	20.5	20.52	20.52	20.48	20.26	19.97	19.72		(93)
			uirement											
			ternal ter		re obtair	ned at st	ep 11 of	Table 9	b. so tha	t Ti.m=(76)m an	d re-calc	ulate	
			or gains	•										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisat	tion fac	tor for g	ains, hm	:										
(94)m=	1	0.99	0.99	0.97	0.9	0.72	0.51	0.54	0.8	0.96	0.99	1		(94)
-	gains,		, W = (94	, <u> </u>	· · · · · · · · · · · · · · · · · · ·		1		1			1	1	
ι ΄ L	298.76	309.83	311.44	303.3	277.13	210.25	143.35	150.09	221.05	266.85	279.77	288.3		(95)
	-		ernal tem				1		1				I	
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			an intern			i	· · ·		<u>, </u>	- 1			I	
ι ΄ L	585.17	564.34	508.47	420.99	323.09	216.68	143.84	150.81	235.36	359.29	480.84	582.63		(97)
· -			ement fo			1	1	1	í i	<u>í - (</u>	,	040.00	l	
(98)m=	213.09	171.03	146.58	84.74	34.19	0	0	0	0	68.78	144.77	218.98		
								l ota	l per year	(kWh/year) = Sum(9	8)15,912 =	1082.17	(98)
Space	heatin	g require	ement in	kWh/m ²	/year								20.93	(99)
9a. Ene	rgy rec	uiremer	nts – Indi	ividu <mark>al h</mark>	eating s	yst <mark>ems</mark> i	ncluding	micro-C	HP)					
Sp <mark>ace</mark>	heatir	ng:												_
Fractic	on of sp	ace h <mark>e</mark> a	at from s	econdar	y/supple	mentary	system						0	(201)
Fractio														
Fractic	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1 ·	– (201) =				1	(202)
			at from m ng from						- (201) = 02) × [1 -	(203)] =			1	(202) (204)
Fractic	on of to	tal heati		main sys	stem 1					(203)] =				
Fractic Efficier	on of to ncy of r	tal heati nain spa	ng from	main sys	stem 1 em 1	g system				(203)] =			1	(204)
Fractic Efficier	on of to ncy of r ncy of s	tal heati nain spa seconda	ng from ace heat iry/supple	main sys ing syste ementar	stem 1 em 1 y heating		n, %	(204) = (2	02) × [1 –		Nov	Dec	1 89.9 0	(204) (206) (208)
Fractic Efficier Efficier	on of to ncy of r ncy of s Jan	tal heati main spa seconda Feb	ng from ace heat ry/supple Mar	main sys ing syste ementar Apr	stem 1 em 1 y heating May	Jun				(203)] = Oct	Nov	Dec	1 89.9	(204) (206) (208)
Fractic Efficier Efficier Space	on of to ncy of r ncy of s Jan	tal heati main spa seconda Feb	ng from ace heat iry/supple	main sys ing syste ementar Apr	stem 1 em 1 y heating May	Jun	n, %	(204) = (2	02) × [1 –		Nov 144.77	Dec 218.98	1 89.9 0	(204) (206) (208)
Fractic Efficier Efficier Space	on of to ncy of r ncy of s Jan heatin 213.09	tal heati main spa seconda Feb g require 171.03	ng from ace heat ry/supple Mar ement (c 146.58	main syste ementar Apr alculate 84.74	stem 1 em 1 y heating May d above 34.19	Jun	n, % Jul	(204) = (2 Aug	02) × [1 –	Oct			1 89.9 0	(204) (206) (208) ear
Fractic Efficier Efficier Space (211)m	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98	tal heati main spa seconda Feb g require 171.03)m x (20	ng from ace heat ry/supple Mar ement (c 146.58 (4)] } x 1	main syste ementar Apr alculate 84.74 00 ÷ (20	stem 1 em 1 y heating May d above 34.19 06)	Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.78	144.77	218.98	1 89.9 0	(204) (206) (208)
Fractic Efficier Efficier Space (211)m	on of to ncy of r ncy of s Jan heatin 213.09	tal heati main spa seconda Feb g require 171.03	ng from ace heat ry/supple Mar ement (c 146.58	main syste ementar Apr alculate 84.74	stem 1 em 1 y heating May d above 34.19	Jun	n, % Jul	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.78 76.5	144.77 161.04	218.98 243.58	0 kWh/ye	(204) (206) (208) ear (211)
Fractic Efficier Efficier Space (211)m	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03	tal heati main spa seconda Feb g require 171.03)m x (20 190.25	ng from ace heat ry/supple Mar ement (c 146.58 (4)] } x 1 163.05	main systementar Apr alculate 84.74 00 ÷ (20 94.26	stem 1 em 1 y heating May d above 34.19 06) 38.03	Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.78 76.5	144.77 161.04	218.98 243.58	1 89.9 0	(204) (206) (208) ear
Fractic Efficier Efficier Space (211)m	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03	tal heati main spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar	main systementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/	stem 1 em 1 y heating May d above 34.19 06) 38.03	Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.78 76.5	144.77 161.04	218.98 243.58	0 kWh/ye	(204) (206) (208) ear (211)
Fractic Efficier Efficier Space (211)m Space = {[(98)]	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03	tal heati main spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s	ng from ace heat ry/supple Mar ement (c 146.58 (4)] } x 1 163.05	main systementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/	stem 1 em 1 y heating May d above 34.19 06) 38.03	Jun) 0	n, % Jul 0	(204) = (2 Aug 0	02) × [1 - Sep 0	Oct 68.78 76.5	144.77 161.04	218.98 243.58	0 kWh/ye	(204) (206) (208) ear (211)
Fractic Efficier Efficier Space (211)m	on of to ncy of r ncy of s Jan 213.09 = {[(98 237.03 heatin m x (20	tal heati main spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s 01)] } x 1	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20	main syste ementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/ 8)	stem 1 em 1 y heating d above 34.19 06) 38.03 month	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.78 76.5 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0	218.98 243.58 = 0	0 kWh/ye	(204) (206) (208) ear (211) (211)
Fractic Efficier Efficier Space (211)m (211)m (215)m=	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0	tal heati main spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s 01)] } x 1 0	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20	main syste ementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/ 8)	stem 1 em 1 y heating d above 34.19 06) 38.03 month	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.78 76.5 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0	218.98 243.58 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ear (211)
Fractic Efficier Efficier Space (211)m (211)m (215)m= Water h	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0	tal heati nain spa seconda <u>Feb</u> g require 171.03)m x (20 190.25 g fuel (s 01)] } x 1 0	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20 0	main systementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.78 76.5 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0	218.98 243.58 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211)
Fractic Efficier Efficier Space (211)m (211)m Space = {[(98)r (215)m= Water h Output f	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0	tal heati nain spa seconda <u>Feb</u> g require 171.03)m x (20 190.25 g fuel (s 01)] } x 1 0	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20	main systementar Apr alculate 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0	Jun 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 - Sep 0 1 (kWh/yea	Oct 68.78 76.5 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0	218.98 243.58 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211)
Fractic Efficier Efficier Space (211)m (211)m Space = {[(98)r (215)m= Water h Output f	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0 neating from wa 134.98	tal heati main spa seconda Feb g require 171.03 (m x (20 190.25 g fuel (s 0) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20 0 ter (calc 122.94	main systementar Apr alculated 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0	Jun 0 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 Sep 0 0 I (kWh/yea	Oct 68.78 76.5 ar) =Sum(2 0 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0 215) _{15,1012}	218.98 243.58 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211)
Fractic Efficier Efficier Space (211)m (211)m Space = {[(98)r (215)m= Water H Output f	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0 neating from wa 134.98	tal heati main spa seconda Feb g require 171.03 (m x (20 190.25 g fuel (s 0) (s) (s) (s) (s) (s) (s) (s) (s) (s) (s	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20 0 ter (calc 122.94	main systementar Apr alculated 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0	Jun 0 0 0	n, % Jul 0	(204) = (2 Aug 0 Tota	02) × [1 Sep 0 0 I (kWh/yea	Oct 68.78 76.5 ar) =Sum(2 0 ar) =Sum(2	144.77 161.04 211) _{15,1012} 0 215) _{15,1012}	218.98 243.58 = 0	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211) (211)
Fractic Efficier Efficier Space (211)m (211)m (215)m= Water H Output f Efficier (217)m=	on of to ncy of r ncy of s Jan heatin 213.09 $= \{[(98)$ 237.03 heatin m x (20 0 neating from wa 134.98 cy of w 88.63	tal heati main spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s 190.25 g fuel (s 190.25 g fuel (s 190.25 g fuel (s 190.25 g fuel (s 190.25 g fuel (s 190.25	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20 0 0 ter (calc 122.94 ater	main systementar Apr alculated 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0 ulated al 108.29 88.08	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0 104.74	Jun 0 0 0 91.59	n, % Jul 0 0 86.07	(204) = (2 Aug 0 Tota 97.06	02) × [1 Sep 0 0 1 (kWh/yea 97.71	Oct 68.78 76.5 ar) =Sum(2 0 ar) =Sum(2 112.39	144.77 161.04 211) _{15,1012} 0 215) _{15,1012} 121.25	218.98 243.58 = 0 = 131.09	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Fractic Efficien Efficien Space (211)m (211)m (215)m= Water H Output f Cutput f Efficien (217)m= Fuel for (219)m	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0 heatin m x (20 0 heatin g from wa 134.98 cy of w 88.63 water = (64)	tal heati main spa seconda Feb g require 171.03 (m x (20) 190.25 g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 190.25 (g fuel (s 118.38 (g fuel heating, m x 100)	ng from ace heat ry/supple ement (c 146.58 (4)] $\}$ x 1 163.05 econdar 00 \div (20 0 0 0 \pm (20 0 ter (calc 122.94 ater 88.41 kWh/mc $0 \div$ (217)	main systementar Apr alculated 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0 ulated al 108.29 88.08 onth m	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0 104.74 87.47	Jun 0 0 0 91.59 86.7	n, % Jul 0 0 86.07 86.7	(204) = (2 Aug 0 Tota 97.06 86.7	02) × [1 Sep 0 0 1 (kWh/yea 97.71 86.7	Oct 68.78 76.5 ar) =Sum(2 0 ar) =Sum(2 112.39 87.89	144.77 161.04 211) _{15,1012} 0 215) _{15,1012} 121.25 88.41	218.98 243.58 = 0 = 131.09 88.67	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)
Fractic Efficier Efficier Space (211)m (211)m (215)m= Water H Output f Efficier (217)m= Fuel for (219)m	on of to ncy of r ncy of s Jan heatin 213.09 = {[(98 237.03 heatin m x (20 0 heatin m x (20 0 heatin g from wa 134.98 cy of w 88.63 water = (64)	tal heati nain spa seconda Feb g require 171.03)m x (20 190.25 g fuel (s 190.25 g fuel (s 190.2	ng from ace heat ry/supple ement (c 146.58 (4)] } x 1 163.05 econdar 00 ÷ (20 0 0 ter (calc 122.94 ater 88.41 kWh/mc	main systementar Apr alculated 84.74 00 ÷ (20 94.26 y), kWh/ 8) 0 ulated al 108.29 88.08 onth	stem 1 em 1 y heating d above 34.19 06) 38.03 month 0 104.74	Jun 0 0 0 91.59	n, % Jul 0 0 86.07	(204) = (2 Aug 0 Tota 97.06 86.7	02) × [1 Sep 0 0 1 (kWh/yea 97.71	Oct 68.78 76.5 ar) =Sum(2 0 ar) =Sum(2 112.39 87.89	144.77 161.04 211) _{15,1012} 0 215) _{15,1012} 121.25	218.98 243.58 = 0 = 131.09	1 89.9 0 kWh/ye	(204) (206) (208) ear (211) (211) (211) (215)

Annual totals		kWh/year		kWh/year	_
Space heating fuel used, main system 1				1203.75	
Water heating fuel used				1510.16]
Electricity for pumps, fans and electric keep-hot					
mechanical ventilation - balanced, extract or po	ositive input from outside		121.42		(230a)
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year	sum of (230	a)(230g) =		196.42	(231)
Electricity for lighting				322.17	(232)
12a. CO2 emissions - Individual heating system	ms including micro-CHP				
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	=	260.01	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	326.19	(264)
Space and water heating	(261) + (262) + (263) + (264) =			586.2	(265)

(231) x

(232) x

0.519

0.519

sum of (265)...(271) =

(272) ÷ (4) =

101.94

167.21

8<mark>55.35</mark>

16.54

88

(267)

(268)

(272)

(273)

(274)

Electricity for pumps, fans and electric keep-hot

Electricity for lighting

Total CO2, kg/year

El rating (section 14)

Dwelling CO2 Emission Rate

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
	2 Bed Flat, 219-223			Address:		nh lunat	ion I ON			
Address : 1. Overall dwelling dimer		Colunan	Jour La	ne, Loug	μοιοαί	gn Junci	ION, LOP	NDON		
Ground floor			Area	. ,	(1a) x	Av. Hei	ight(m) 2.5	(2a) =	Volume(m ³) 194.75	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)) 7	7.9	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	194.75	(5)
2. Ventilation rate:										
Number of chimneys	heating h	econdary neating	/ ·	other	1 = [total	x 4	40 =	m ³ per hour	-
Number of open flues		0] ' [_] + [_	0] - L] = Г	0		20 =	0	(6a) (6b)
Number of intermittent fan	IS L				」 「	0	x 1	10 =	0	(7a)
Number of passive vents					F	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	ange <mark>s per</mark> ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	esent, use the value corres				•	uction			0	(11)
If suspended wooden flo		led) or 0. ⁻	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	tripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -					0	(16)
Air permeability value, o			•	•		etre of e	nvelope	area	2	(17)
If based on air permeabilit						:- b - :			0.1	(18)
Air permeability value applies Number of sides sheltered		s been done	e or a deg	iree all per	meaning	is being us	seu	I	2	(19)
Shelter factor	~			(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo	r monthly wind speed	b						Į		
Jan Feb I	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
	ate ette echanica		-	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N, (2	3b) = (23a	ı) × Fmv (e	equation (I	N5)) . othe	rwise (23b) = (23a)			0.5 0.5	(23a) (23b)
				iency in %						, (,			73.1	(23c)
					0				,	2h)m + (23h) x [1 – (23c)	-	(200)
(24a)m=		0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23	. 100]	(24a)
		d mech	L anical ve	I entilation	without	heat rec	L coverv (N	L MV) (24h	(22)	L2b)m + ()	L 23b)			
(24b)m=	r	0	0	0	0	0	0	0	0	0	0	0		(24b)
		use ex	tract ver	ntilation of	or positiv	re input v	ventilatio	n from o	utside					
,				then (24	•	•				.5 × (23b))			
(24c)m=	- 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous		•				-	-			
	<u>, ,</u>	r	r , ,	m = (22	<i>.</i>	<u>`</u>	, 	<u> </u>	<u> </u>	0.5]			l	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
			î .	nter (24a	, <u>,</u>	, <u> </u>	, <u>,</u>	· · · · · · · · · · · · · · · · · · ·	1 Ó		i	i	I	
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
	/IENT	Gro		Openin		Net Ar		U-val		AXU		k-value		AXk
10/200 -	т	area	(m²)	m	12	A ,n		W/m2		(VV/I	K)	kJ/m²·ł	ς	kJ/K
	ws Type					9.45		/[1/(0.73)-		6.7				(27)
	ws Type					3.15	×1/	/[1/(0.73)-	+ 0.04] =	2.23	╘╴,			(27)
Walls		10.0	05	9.45		0.6	×	0.15	=	0.09	L ļ		╡┝	(29)
Walls		14.	5	0		14.5	×	0.15	=	2.18			$_$ $_$	(29)
Walls		5.3		3.15		2.2	x	0.15	=	0.33				(29)
Total a	area of e	lements	s, m²			29.9								(31)
Party	wall					32	x	0	=	0				(32)
Party	wall					33	x	0	=	0				(32)
Party f	loor					77.9					[(32a)
Party of	ceiling					77.9					[(32b)
Interna	al wall **					82.5					[(32c)
				effective wi nternal wal			ated using	g formula 1	/[(1/U-valı	ıe)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)) + (32) =				11.53	(33)
Heat c	apacity	Cm = S	(A x k)						((28).	(30) + (32	2) + (32a).	(32e) =	15893.	1 (34)
Therm	al mass	parame	eter (TMI	⁻ = Cm ÷	- TFA) in	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-		ere the de tailed calc	etails of the ulation.	constructi	ion are not	t known pi	recisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						6.02	(36)
			are not kr	nown (36) =	= 0.05 x (3	1)			(0.0)	(0.0)		1		 .
i otal f	abric he	at IOSS							(33) +	(36) =			17.55	(37)

Ventila	ation hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	15.61	15.47	15.34	14.65	14.52	13.83	13.83	13.7	14.11	14.52	14.79	15.06		(38)
Heat tr	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	33.16	33.03	32.89	32.21	32.07	31.39	31.39	31.25	31.66	32.07	32.34	32.62		
								-			Sum(39)1.	12 /12=	32.17	(39)
	<u> </u>	· · ·	HLP), W	1					· · ·	= (39)m ÷				
(40)m=	0.43	0.42	0.42	0.41	0.41	0.4	0.4	0.4	0.41	0.41	0.42	0.42	0.44	
Numbe	er of day	s in mo	nth (Tab	le 1a)					,	<pre>average =</pre>	Sum(40)1.	12 / 1 Z=	0.41	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			!	ļ	!	!	!	ļ				I		
4 Wa	ater heat	tina ener	rav reau	irement:								kWh/ye	ar.	
		ing ono	igy ioqu											
				[1 ovp	(0 0003		- 120)2)] + 0.(1012 v (*	FEA 12		42		(42)
	A £ 13.9		+ 1.70 X	r [i - exh	(-0.0003	949 X (11	A -13.9	<i>)</i> 2)] + 0.0	JU13 X (IFA - 13.	.9)			
								(25 x N)				.72		(43)
		-		usage by r day (all w		-	-	to achieve	a water us	se target o	f			
	_						·		0.00	Ort	Neu	Dea		
Hot wate	Jan er usage ii	Feb n litres per	Mar day for ea	Apr ach month	May Vd.m.= fa	Jun ctor from T	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
(44)m=	100.89	, 97.22	93.55	89.88	86.21	82.55	82.55	86.21	89.88	9 <mark>3.55</mark>	97.22	100.89		
(44)111-	100.09	51.22	90.00	03.00	00.21	02.00	02.00	00.21			m(44) ₁₁₂ =		1100.62	(44)
Energy (content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	n x nm x E	0Tm / 3600			bles 1b, 1			
(45)m=	149.62	130.86	135.03	117.72	112.96	97.47	90.32	103.65	104.89	122.24	133.43	144.9		
										Fotal = Su	m(45) ₁₁₂ =	-	1443.08	(45)
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)		-			
	22.44		20.25	17.66	16.94	14.62	13.55	15.55	15.73	18.34	20.01	21.73		(46)
	storage		includir		alar ar M	/\//HBC	storada	within sa	me ves	ما		0		(47)
-		. ,		ank in dw			-			501		0		(47)
		-			-			ombi boil	ers) ente	er '0' in (47)			
	storage			,					,	·				
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature f	actor fro	m Table	2b								0		(49)
			-	e, kWh/ye				(48) x (49)) =			0		(50)
,				cylinder l rom Tabl								0		(54)
		-	ee secti			n/nuc/uc	iy)					0		(51)
	e factor	-										0		(52)
Tempe	erature f	actor fro	m Table	2b								0		(53)
Energy	y lost fro	m water	storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54)
Enter	(50) or ((54) in (5	55)									0		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)

If cylinder contain	s dedicated	d solar sto	rage, (57)r	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circuit	t loss (an	nual) fro	om Table	93							0		(58)
Primary circuit	•	,			59)m = ((58) ÷ 36	65 × (41)	m					
(modified by	/ factor fr	om Tab	le H5 if t	here is s	solar wat	er heatir	ng and a	cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	lculated f	for each	month (61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 11.84	10.68	11.81	11.4	11.76	11.36	11.73	11.75	11.38	11.79	11.44	11.83		(61)
Total heat req	uired for	water he	eating ca	alculated	l for eacl	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)r	n
(62)m= 161.46	141.54	146.84	129.12	124.72	108.84	102.05	115.4	116.27	134.02	144.87	156.73		(62)
Solar DHW input	calculated u	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if I	FGHRS	and/or V	VWHRS	applies	, see Ap	pendix C	<u>3)</u>					
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	ater heat	ter						-	-	-			
(64)m= 161.46	141.54	146.84	129.12	124.72	108.84	102.05	115.4	116.27	134.02	144.87	156.73		_
							Outp	out from wa	ater heate	r (annual)₁	12	1581.85	(64)
Heat gains fro	m water	heating,	kWh/mo	onth 0.2	5 ´ [0.85	× (45)m	+ (61)m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 52.71	46.18	47.85	41.99	40.5	35.25	32.96	37.4	37.72	43.59	47.22	51.14		(65)
in <mark>clude</mark> (57)	m in c <mark>alc</mark>	ulation	o <mark>f (6</mark> 5)m	only if c	ylinder is	s in th <mark>e c</mark>	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	Table 5	and 5a)):									
Met <mark>abolic</mark> gair	ns (Table	5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09		(66)
Lighting gains	(calculat	ed in Ap	pendix l	_, equat	ion L9 oi	r L9a), a	lso see	Table 5					
(67)m= 27.01	23.99	19.51	14.77	11.04	9.32	10.07	13.09	17.57	22.31	26.04	27.76		(67)
Appliances ga	-						-	see Ta	ble 5				
(68)m= 215	217.23	211.6	199.64	184.53	170.33	160.84	158.61	164.23	176.2	191.31	205.51		(68)
Cooking gains	(calcula	ted in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5	-			
(69)m= 35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11		(69)
Pumps and fa	ns gains	(Table 5	ōa)					-	_				
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. ev	aporatio	n (negat	tive valu	es) (Tab	le 5)								
(71)m= -96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87		(71)
Water heating	gains (T	able 5)											
(72)m= 70.84	68.72	64.31	58.32	54.43	48.96	44.31	50.27	52.39	58.59	65.59	68.73		(72)
Total internal	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m= 375.17	372.26	357.75	335.06	312.33	290.94	277.55	284.3	296.52	319.43	345.26	364.33		(73)
6. Solar gain	s:												
Solar gains are	calculated u	using sola	r flux from	Table 6a	and associ	iated equa	tions to co	onvert to th	ie applicat	le orientat	ion.		
Orientation:	Access F Table 6d	actor	Area m²		Flu Tal	x ole 6a	т	g_ able 6b	Та	FF able 6c		Gains (W)	

									-			_	_					
Northeast 0.9	•		x	3.1	5	X	1	1.28	×		0.63	>	Ĺ	0.1		=	1.55	(75)
Northeast 0.9			x	3.1	5	x	2	2.97	×		0.63	>	Ľ	0.1		=	3.16	(75)
Northeast 0.9			x	3.1	5	x	4	1.38	×		0.63	`	Ľ	0.1		=	5.69	(75)
Northeast 0.9	0.77		x	3.1	5	x	6	57.96	×		0.63)		0.1		=	9.35	(75)
Northeast 0.9	0.77		x	3.1	5	x	9	1.35	x		0.63	>	: [0.1		=	12.56	(75)
Northeast 0.9	0.77		x	3.1	5	x	9	7.38	×		0.63	>		0.1		=	13.39	(75)
Northeast 0.9	0.77		x	3.1	5	x	9	91.1	×		0.63	>	: [0.1		=	12.53	(75)
Northeast 0.9	0.77		x	3.1	5	x	7	2.63	x		0.63	>	: [0.1		=	9.99	(75)
Northeast 0.9	0.77		x	3.1	5	x	5	0.42	×		0.63	>	Ē	0.1		=	6.93	(75)
Northeast 0.9	0.77		x	3.1	5	x	2	8.07	×		0.63	>	٢Ľ	0.1		=	3.86	(75)
Northeast 0.9	0.77		x	3.1	5	x		14.2	x		0.63	>		0.1		=	1.95	(75)
Northeast 0.9	0.77		x	3.1	5	x	9	9.21	×		0.63)	Ē	0.1		=	1.27	(75)
Southwest0.9	0.77		x	9.4	5	x	3	6.79]		0.63	_ ,	Ē	0.1		=	15.18	(79)
Southwest0.9	0.77		x	9.4	5	x	6	2.67	Ī		0.63	_ ,	Ē	0.1		=	25.86	(79)
Southwest0.9	0.77		x	9.4	5	x	8	5.75	Ī		0.63	_ 	Ē	0.1		=	35.38	(79)
Southwest0.9	0.77		x	9.4	5	x	1	06.25	Ī		0.63	_ ,	Ē	0.1		=	43.84	(79)
Southwest0.9	0.77		x	9.4	5	x	1	19.01	Ī		0.63	_ _ ,	Ē	0.1		=	49.1	(79)
Southwest0.9	(0.77		x	9.4	5	X	1	18.15			0.63	>		0.1		=	48.75	(79)
Sout <mark>hwest_{0.9}</mark>	< 0.77		x	9.4	5	x	1	13.91	1		0.63	>	Ē	0.1		-	47	(79)
Sout <mark>hwest</mark> 0.9	× 0.77		x	9.4	5	х	1	04.39	i /		0.63	>	Ē	0.1		=	43.07	(79)
Sout <mark>hwest</mark> 0.9	× 0.77		x	9.4	5	x	9	2.85	i/		0.63	>	Ē	0.1		=	38.31	(79)
Southwest0.9	0.77		x	9.4	5	x	6	9.27	í –		0.63		Ē	0.1		=	28.58	(79)
Southwest0.9	0.77		x	9.4	5	x	4	4.07	1		0.63	>	Ē	0.1		=	18.18	(79)
Southwest0.9	0.77		x	9.4	5	х	3	1.49	i		0.63	>	Ē	0.1		=	12.99	(79)
									4	L								
Solar gains i	n watts, ca	alculate	ed	for each	n mont	h			(83)	m = S	um(74)m .	(82)	m					
(83)m= 16.73	3 29.02	41.07		53.18	61.66		62.14	59.53	53	8.06	45.24	32.	44	20.13	14.	26		(83)
Total gains -	- internal a	nd sol	ar	(84)m =	: (73)n) + ((83)m	, watts										
(84)m= 391.9	1 401.28	398.82	2	388.24	373.99) 3	353.07	337.07	33	7.36	341.76	351	.86	365.4	378	.58		(84)
7. Mean int	ernal temp	peratur	e ((heating	seaso	n)												
Temperatu	re during h	eating	pe	eriods ir	the liv	ving	area	from Tab	ble 9	9, Th	1 (°C)						21	(85)
Utilisation f	actor for g	ains fo	r li	iving are	a, h1,	m (s	вее Та	ble 9a)										
Jan	Feb	Ма	·	Apr	Мау	/	Jun	Jul		Aug	Sep	0	ct	Nov	D	ec		
(86)m= 1	0.99	0.98	Т	0.93	0.79	Т	0.57	0.41	0	.43	0.64	0.9	9	0.98	1	I		(86)
Mean interr	nal temper	ature i	n li	iving are	ea T1 (follo	ow ste	ps 3 to 7	7 in	Tabl	e 9c)						-	
(87)m= 20.77		20.88	-	20.96	20.99	Т	21	21	1	21	, 21	20.	98	20.87	20.	76		(87)
Temperatu	e during h	eating		eriods in	rest c	f dv	vellina	from Ta	ahle	αт	և հշ (°Ը)			•			1	
(88)m= 20.59		20.59	÷	20.6	20.6	-	20.61	20.61	1	0, 1).61	20.61	20	.6	20.6	20	.6		(88)
			_						I		I			1			I	
Utilisation f		ains to 0.97		0.91	veiiing 0.76	-	.,m (se 0.53	0.37	T Ó	.39	0.6	0.8	7	0.98	1		1	(89)
Moon intorr						_			I					0.00		•	I	

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

(90)m=	20.28	20.34	20.44	20.55	20.6	20.61	20.61	20.61	20.61	20.58	20.44	20.27		(90)
I									f	LA = Livin	g area ÷ (4	4) =	0.37	(91)
Moon	internal	ltomnor	aturo (fo	or the wh	olo dwo	llina) – fl	ΓΛ √ Τ1	⊥ (1 _ fl	∧) v T2					
(92)m=	20.46	20.52	20.6	20.7	20.74	20.75	20.75	20.76	20.75	20.72	20.6	20.45		(92)
				n internal	_						20.0	20.10		(/
(93)m=	20.31	20.37	20.45	20.55	20.59	20.6	20.6	20.61	20.6	20.57	20.45	20.3		(93)
			uirement			1								. ,
				mperatui	re obtair	ned at ste	ep 11 of	Table 9	b, so tha	t Ti.m=(76)m an	d re-calc	ulate	
				using Ta			-p		.,	(
	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	n:										
(94)m=	0.99	0.99	0.97	0.91	0.76	0.53	0.37	0.39	0.6	0.87	0.98	0.99		(94)
Usefu	I gains,	hmGm	, W = (94	4)m x (84	4)m	-	-	-	-					
(95)m=	389.07	396.21	387.19	352.35	282.7	188.42	125.68	131.42	205.7	307.23	357.08	376.52		(95)
Month	nly aver	age exte	rnal tem	perature	e from Ta	able 8								
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat		e for mea	an interr	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m	-			1	
(97)m=	531.05	510.83	458.87	375.28	285.23	188.45	125.68	131.42	205.85	319.85	431.77	525.27		(97)
Space			i	r each n			1		Í	<u> </u>				
(98)m=	105.64	77.03	53.33	16.51	1.88	0	0	0	0	9.38	53.78	110.67		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	428.21	(98)
Space	e heating	g requ <mark>ire</mark>	ement in	kWh/m²	/year								5.5	(99)
9a. En	ergy rec	uiremer	nts – Ind	ividu al h	eating s	ystems i	ncluding	micro-C	CHP)					
Space	e heatir	ng:												
Fra <mark>cti</mark>	on of sp	ace hea	t from s	<mark>econ</mark> dar	y/sup <mark>ple</mark>	mentary	system						0	(201)
Fracti	on of sp	ace hea	at from m	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fracti	on of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of r	nain spa	ace heat	ing syste	em 1								89.9	(206)
Efficie	ency of s	seconda	ry/suppl	ementar	y heatin	g system	ı, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	 var
Space				alculate			Jui	Aug	Ocp	001	NOV	Dee	KVVII/yC	a
Opuol	105.64	77.03	53.33	16.51	1.88	0	0	0	0	9.38	53.78	110.67		
(211)m) <u>(</u>)									(211)
(211)11	117.51	85.68	4)] } X 59.32	00 ÷ (20 18.36	2.09	0	0	0	0	10.44	59.82	123.11		(211)
	117.51	05.00	JJ.JZ	10.50	2.03	0	0		l (kWh/yea				476.32	(211)
0		. f 1 / .						1010		(1) – Odini(1	- ' ' / 15,1012		470.32	(211)
•			econdar 00 ÷ (20	y), kWh/ wa	month									
- \[(30) (215)m=	0	0	00 - (20	0	0	0	0	0	0	0	0	0		
(210)11-	v	0	Ű	Ű	0	Ű	Ű		l (kWh/yea	-			0	(215)
Motor	h								(,	− / 15,1012		U	_(210)
	heating		tor (calo	ulated al	hove									
Juipul	161.46	141.54	146.84	129.12	124.72	108.84	102.05	115.4	116.27	134.02	144.87	156.73		
Efficier		ater hea						I	I				86.7	(216)
														- 1° - ′

(217)m= 87.94	87.8	87.53	87.05	86.75	86.7	86.7	86.7	86.7	86.9	87.54	88	1	(217)
Fuel for water				00.75	00.7	00.7	00.7	00.7	00.5	07.04	00		()
(219)m = (64)	-									-	-	•	
(219)m= 183.6	161.2	167.76	148.33	143.78	125.53	117.71	133.1	134.11	154.22	165.48	178.11		_
							Tota	al = Sum(2		_		1812.92	(219)
Annual totals Space heating		n d main	svetom	1					k	Wh/year	•	kWh/yea 476.32	n r
Water heating			System									1812.92	\exists
-												1812.92	
Electricity for p												•	
mechanical v	rentilatio	n - balan	ced, ext	ract or p	ositive ir	nput fron	n outside	e			182.95		(230a)
central heatir	ng pump	:									30]	(230c)
boiler with a	fan-assis	sted flue									45]	(230e)
Total electricit	y for the	above, k	(Wh/yea	r			sum	of (230a)	(230g) =			257.95	(231)
Electricity for I	iahtina											170.05	(232)
	ignung											476.95	(202)
12a. CO2 em		– Individi	ual heati	ng syste	ems inclu	uding mi	cro-CHF	þ				476.95	(232)
		– Individi	ual heati	ng syste			cro-CHF)	Fmiss	ion fac	tor		
		– Individi	ual heati	ng syste	En	uding mi ergy /h/year	cro-CHF)	Emiss kg CO	ion fac 2/kWh	tor	Emission kg CO2/ye	s
	hissions -			ng syste	En kW	ergy	cro-CHF			2/kWh	tor	Emission	s
12a. CO2 em	nissions · I (main s	ystem 1)		ng syste	En kW (211	ergy /h/year	cro-CHF		kg CO	2/kWh		Emission kg CO2/ye	sear
12a. CO2 em Space heating	issions -) (main s) (second	ystem 1)		ng syste	En kW (211	ergy /h/year I) x 5) x	cro-CHF		kg CO	2/kWh 16 19	÷	Emission kg CO2/ye	s ear (261)
12a. CO2 em Space heating Space heating	issions - (main s (second	ystem 1) dary)		ng syste	En kW (211 (215	ergy /h/year I) x 5) x			kg CO. 0.2 0.5	2/kWh 16 19	-	Emission kg CO2/ye	s ear (261) (263)
12a. CO2 err Space heating Space heating Water heating	issions (main s (main s (second	ystem 1) dary) ng			En kW (211 (215 (215) (267	ergy /h/year I) x 5) x 9) x			kg CO. 0.2 0.5	2/kWh 16 19 16	-	Emission kg CO2/ye 102.88 0 391.59	s ar (261) (263) (264)
12a. CO2 em Space heating Space heating Water heating Space and wa	issions (main s (second ter heati oumps, f	ystem 1) dary) ng			En kW (211 (215 (215) (267	ergy /h/year 1) x 5) x 2) x 1) + (262) -			kg CO.	2/kWh 16 19 16 19	-	Emission kg CO2/ye 102.88 0 391.59 494.48	s (261) (263) (264) (265)
12a. CO2 em Space heating Space heating Water heating Space and wa Electricity for p	issions - (main s (second ter heati oumps, f ighting	ystem 1) dary) ng			En kW (211 (215 (215) (264) t (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) -		(264) =	kg CO. 0.2 0.5 0.2	2/kWh 16 19 16 19 19	-	Emission kg CO2/ye 102.88 0 391.59 494.48 133.88	s (261) (263) (264) (265) (267)
12a. CO2 em Space heating Space heating Water heating Space and wa Electricity for p Electricity for p Total CO2, kg	issions - (main s (second ter heati bumps, f ighting /year	ystem 1) dary) ng ans and	electric		En kW (211 (215 (215) (264) t (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) -		(264) = sum c	kg CO. 0.2 0.5 0.2 0.5	2/kWh 16 19 16 19 19	-	Emission kg CO2/ye 102.88 0 391.59 494.48 133.88 247.54 875.89	S (261) (263) (264) (265) (267) (268) (272)
12a. CO2 em Space heating Space heating Water heating Space and wa Electricity for p Electricity for p	iissions - (main s (second ter heati bumps, f ighting /year 2 Emissi	ystem 1) dary) ng ans and	electric		En kW (211 (215 (215) (264) t (234)	ergy /h/year 1) x 5) x 2) x 1) + (262) -		(264) = sum c	kg CO. 0.2 0.5 0.2 0.5 0.5 0.5	2/kWh 16 19 16 19 19	-	Emission kg CO2/ye 102.88 0 391.59 494.48 133.88 247.54	S (261) (263) (264) (265) (265) (267) (268)

			User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 201		;	Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
Addross	1 Bed Flat, 219-223			Address:		nh lunct	ion I ON			
Address : 1. Overall dwelling dimer		Columati		ie, Loug	προιοαί	JII JUIICI	ION, LON			
Ground floor			Area	. ,	(1a) x	Av. He i	ight(m) 2.5	(2a) =	Volume(m³) 124.5	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	4	9.8	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	124.5	(5)
2. Ventilation rate:										
Number of chimneys	heating	econdary neating	′ (] + [other	1 = [total	x 4	40 =	m ³ per hour	_
Number of open flues		0] ' [] + [0] - L] = C	0		20 =	0	(6a) (6b)
Number of intermittent fan	IS	_		-	J L T	0	x 1	10 =	0	(7a)
Number of passive vents					Г	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	anges <mark>per</mark> ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
Number of storeys in the Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	esent, use the value corres				•	uction			0	(11)
If suspended wooden flo	oor, enter 0.2 (unsea	led) or 0.1	(sealed	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught s	tripped							0	(14)
Window infiltration				0.25 - [0.2			(45)		0	(15)
Infiltration rate Air permeability value, c	750 overessed in out	nic motros		(8) + (10) ·				aroa	0	(16)
If based on air permeabilit			•	•	•		invelope	alea	0.1	(17) (18)
Air permeability value applies	-					is being us	sed	l	0.1	
Number of sides sheltered	Ł								3	(19)
Shelter factor			((20) = 1 - [0.075 x (1	9)] =			0.78	(20)
Infiltration rate incorporation	ng shelter factor		((21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo	<u> </u>	t t					i	·		
Jan Feb I	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	- I I							·		
(22)m= 5.1 5 4	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m		_			
	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(220)
				endix N, (2	3b) = (23a	a) x Fmv (e	equation (N5)) . other	wise (23b) = (23a)			0.5	(23a) (23b)
				iency in %) (200)			0.5	
			-	-	-					2b)m i (22h) v [1 – (23c)	73.1	(23c)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21 (24a	0.21	0.22	230) × [0.22	0.23	- 100j	(24a)
												0.20	l	(,)
D) II (24b)m=				entilation				0 (240	0 m = (22)	$\frac{2}{0}$ m + (1)	230)	0	1	(24b)
		-		•	-	-	-	-	•	0	0	0		(240)
,				ntilation c hen (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous									1	
i	if (22b)m	n = 1, the	en (24d)	m = (22k	o)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at losses	s and he	eat loss i	oaramete	er:									_
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	AXU		k-value	e	AXk
		area		'n		A ,n	n²	W/m2	K	(VV/	K)	kJ/m²·l	ĸ	kJ/K
Windo	ws Type	1				10.8	x1/	[1/(0.73)+	- 0.04] =	7.66				(27)
Windo	<mark>ws</mark> Type	2				2.475	; x1/	[1/(0.73)+	- 0.04] =	1.76				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.8		8.7	x	0.15] = [1.31				(29)
Walls ⁻	Гуре2	3.5		2.47		1.03	×	0.15	 =	0.15	F i		i i	(29)
Total a	rea of el	lements	, m²			23								(31)
Party v	vall					51.75	j x	0		0				(32)
Party f	_					49.8	\exists		เ		L		\dashv	(32a)
Party c	eiling					49.8					ĺ		\exists	(32b)
Interna	al wall **					45.6					[$\exists \Box$	(32c)
							ated using	ı formula 1,	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	3.2	
	heat los			nternal wall	s and pan	litions		(26)(30)	+ (32) =				40.07	(22)
	apacity (0)				(20)(00)		(30) + (32	2) + (225)	(220) -	10.87	
			. ,	- Cm ·		k l/m2k				tive Value	· · · ·	(326) =	13269.5	
		-		P = Cm ÷	,			racisaly the				abla 1f	250	(35)
	used instea				constructi	ion ale not	KIIOWII PI	ecisely life	inucative	values of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						5.22	(36)
			are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric hea	at loss							(33) +	(36) =			16.09	(37)
Ventila	tion hea	t loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	9.59	9.51	9.43	9.03	8.95	8.55	8.55	8.47	8.71	8.95	9.11	9.27		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	25.68	25.6	25.52	25.12	25.04	24.64	24.64	24.56	24.8	25.04	25.2	25.36		
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		1	Average =	Sum(39)1	12 /12=	25.1p	age 2 of 39)

Heat lo	ss para	ımeter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	0.52	0.51	0.51	0.5	0.5	0.49	0.49	0.49	0.5	0.5	0.51	0.51		
						!		1	,	Average =	Sum(40)1.	.12 /12=	0.5	(40)
Numbe	-	/s in mo	<u> </u>	r í		<u> </u>	I	<u> </u>				_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF.	A > 13.9	upancy, 9, N = 1 9, N = 1		(1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13		68		(42)
Reduce	the annua	al average	hot water	usage by	5% if the c		designed	(25 x N) to achieve		se target o		1.2		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage i	n litres per	r day for e		,	ctor from	Table 1c x	-						
(44)m=	81.62	78.65	75.68	72.72	69.75	66.78	66.78	69.75	72.72	75.68	78.65	81.62		
				I		I		I	-	rotal = Su	m(44) ₁₁₂ =		890.4	(44)
Ener <mark>gy</mark> c	content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	m x nm x L	OTm / 3600) kWh/mor	oth (<mark>see T</mark> a	ables 1b, 1	c, 1d)		
(45)m=	1 <mark>2</mark> 1.04	105.86	109.24	95. <mark>2</mark> 4	91.38	78.86	73.07	83.85	84.85	98.89	107.94	117.22		
If instant	aneous w	vətor hoati	ng at poin	t of use (no	hot water	r storage)	enter () in	boxes (46		Total = Su	m(45) ₁₁₂ =	:	1167.46	(45)
														(10)
(46)m= Water s	18.16	15.88	16.39	14.29	13.71	11.83	10.96	12.58	12.73	14.83	16.19	17.58		(46)
	-		includir	ng any se	olar or M	WHRS	storage	within sa	ame ves	sel)		(47)
				-		enter 110					· · · · ·	5		()
	•	-			-			ombi boil	ers) ente	er '0' in (47)			
Water s	storage	loss:		,						·	,			
a) If m	anufact	urer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):				(0		(48)
Tempe	rature f	actor fro	m Table	2b							(C		(49)
Energy	lost fro	m watei	· storage	e, kWh/ye	ear			(48) x (49)) =		()		(50)
				•		or is not								
		-			le 2 (kW	h/litre/da	ay)				(0		(51)
	-	eating s from Ta		011 4.3								2	l	(52)
		actor fro		2b))		(52)
				e, kWh/ye	aar			(47) x (51)) x (52) x (⁴	53) -				(54)
•••		(54) in (5	-	, KVVII/y	501			(47) X (01))	00) -))		(54)
	. ,	. , .	,	for each	month			((56)m = (55) × (41)ı	m	`	5		()
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	r contains	s dedicate	d solar sto	prage, (57)	-			-	7)m = (56)	-	H11) is fro	-	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Priman		loss (ar	nual) fr	, om Table	<u>.</u> 3	-	•	-	•)		(58)
-						(59)m = ((58) ÷ 36	65 × (41)	m		Ľ`	-	I	
-						. ,	. ,	ng and a		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
L													I	

Combi	loss ca	alculated	for eac	h month	(61)m =	(60)) ÷ 36	65 × (41))m						
(61)m=	11.76	10.62	11.74	11.35	11.71	1	1.32	11.69	11.7	11.33	11.73	11.37	11.76]	(61)
Total h	neat rec	uired for	water h	neating	calculated	d fo	r eacl	n month	(62)m =	0.85 ×	(45)m ·	+ (46)m +	(57)m +	- · (59)m + (61)m	
(62)m=	132.8	116.48	120.98	106.58	103.1	9	0.18	84.76	95.56	96.19	110.62	2 119.31	128.98		(62)
Solar D	-IW input	calculated	using Ap	pendix G	or Appendix	κΗ ((negati	ve quantity	/) (enter '0	' if no sola	ar contrib	ution to wate	er heating)		
(add a	ddition	al lines if	FGHR	S and/or	WWHRS	S ap	plies	, see Ap	pendix (G)				-	
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Outpu	t from v	vater hea	ter						-	-			_	_	
(64)m=	132.8	116.48	120.98	106.58	103.1	9	0.18	84.76	95.56	96.19	110.62	2 119.31	128.98		_
									Outp	out from w	ater hea	ter (annual)	112	1305.54	(64)
Heat g	ains fro	om water	heating	g, kWh/r	nonth 0.2	5 ′	[0.85	× (45)m	+ (61)m	n] + 0.8 x	x [(46)r	n + (57)m	+ (59)m	[]	
(65)m=	43.19	37.85	39.26	34.5	33.31	2	9.05	27.22	30.81	31.05	35.81	38.73	41.92		(65)
inclu	ıde (57)m in calo	culation	of (65)r	n only if c	cylir	nder i	s in the c	dwelling	or hot w	ater is	from com	munity h	neating	
5. In	ternal g	ains (see	e Table	5 and 5	a):										
Metab	olic gai	ns (Table	e 5), Wa	atts											
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	84.21	84.21	84.21	84.21	84.21	8	84.21	84.21	84.21	84.21	8 <mark>4.21</mark>	84.21	84.21		(66)
Lightir	g gains	s (calcula	ted in A	ppendix	. L, equat	tion	L9 o	r L9a), a	lso see	Table 5					
(67)m=	17.77	15.79	12.84	9.72	7.27	(5.13	6.63	8.62	11.56	14.68	17.14	18.27		(67)
Applia	nces ga	ains (ca <mark>lc</mark>	ulated i	n Appei	ndix L, eq	uat	tion L	13 o <mark>r L1</mark> :	3a), also	see Ta	ble 5				
(68)m=	146.71	148.24	144.4	136.23	125.92	1	16.23	109.76	108.24	112.07	120.24	4 130.55	140.24		(68)
Cookir	ng gain	s (calcula	ated in A	Appendi	x L, equa	tior	n L15	or L15a)), also se	ee Table	e 5				
(69)m=	31.42	31.42	31.42	31.42	31.42	3	1.42	31.42	31.42	31.42	31.42	31.42	31.42	1	(69)
Pumps	s and fa	ans gains	(Table	5a)											
(70)m=	3	3	3	3	3		3	3	3	3	3	3	3]	(70)
Losse	s e.g. e	vaporatio	n (nega	ative val	ues) (Tab	ble	5)			•	•	•			
(71)m=	-67.37	-67.37	-67.37	-67.37	-67.37	-6	67.37	-67.37	-67.37	-67.37	-67.37	-67.37	-67.37]	(71)
Water	heating	, g gains (1	Table 5)		•						•	•	<u>.</u>		
(72)m=	58.05	56.33	52.77	47.92	44.78	4	0.35	36.58	41.41	43.12	48.14	53.8	56.34]	(72)
Total	interna	l gains =	:		-		(66)	m + (67)m	n + (68)m -	+ (69)m +	(70)m +	(71)m + (72))m	1	
(73)m=	273.8	271.62	261.27	245.14	229.23	2	13.98	204.24	209.52	218.02	234.3	2 252.75	266.11]	(73)
6. So	lar gair	is:	<u>.</u>										<u>.</u>		
Solar (gains are	calculated	using sol	ar flux fro	n Table 6a	and	associ	ated equa	tions to co	onvert to th	ne applic	able orienta	tion.		
Orient		Access F		Are			Flu		_	g_		FF		Gains	
		Table 6d		m²			Tat	ole 6a	Τ	able 6b		Table 6c		(W)	
Southe	ast <mark>0.9x</mark>	0.77)	(2	.47	x	3	6.79	x	0.63	x	0.1	=	3.98	(77)
	ast <mark>0.9x</mark>	0.77)	< _ 2	.47	x	6	2.67	x	0.63	x	0.1	=	6.77	(77)
Southe	ast <mark>0.9x</mark>	0.77)	< 2	.47	x	8	5.75	x	0.63	x	0.1	=	9.27	(77)
	ast <mark>0.9x</mark>	0.77)	(2	.47	x	1	06.25	x	0.63	x	0.1	=	11.48	(77)
Southe	ast <mark>0.9x</mark>	0.77)	(2	.47	x	1	19.01	x	0.63	x	0.1	=	12.86	(77)

Southeast 0	.9x 0.77	x	2.47	3	۲ 1	18.15	x	0.63	x	0.1	=	= 12.77	(77)
Southeast 0	. <mark>9x</mark> 0.77	x	2.47	;	(1	13.91	x	0.63	×	0.1	-	= 12.31	(77)
Southeast 0	.9x 0.77	x	2.47	;	۲ (04.39	x	0.63	×	0.1	-	= 11.28	(77)
Southeast 0	.9x 0.77	x	2.47	;	<u>د</u> ا	92.85	x	0.63	x	0.1	-	= 10.03	(77)
Southeast 0	.9x 0.77	x	2.47	3	(69.27	x	0.63	x	0.1	=	= 7.48	(77)
Southeast 0	.9x 0.77	x	2.47	3	(,	44.07	x	0.63	×	0.1		= 4.76	(77)
Southeast 0	.9x 0.77	x	2.47	3	(;	31.49	x	0.63	x	0.1		= 3.4	(77)
Southwest ₀	.9x 0.77	x	10.8	;	(;	36.79	1	0.63	_ x [0.1	-	= 17.35	(79)
Southwest ₀	.9x 0.77	x	10.8	;	((62.67	1	0.63	_ × [0.1	-	= 29.55	(79)
Southwest ₀	.9x 0.77	x	10.8		(;	85.75	1	0.63		0.1	<u> </u>	= 40.43	(79)
Southwest ₀	.9x 0.77	x	10.8	;	·	06.25	1	0.63		0.1		= 50.1	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(1	19.01	i i	0.63		0.1	-	= 56.12	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(1	18.15	i i	0.63		0.1	-	= 55.71	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(<u> </u>	13.91	1	0.63		0.1	-	= 53.71	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(<u> </u>	04.39		0.63		0.1	-	= 49.22	(79)
Southwest ₀	.9x 0.77	x	10.8	;	<u>ا</u>	92.85	1	0.63		0.1	-	= 43.78	(79)
Southwest ₀	.9x 0.77	x	10.8	;	((69.27	1	0.63		0.1	=	= 32.66	(79)
Sout <mark>hwest</mark> 0	.9x 0.77	x	10.8			44.07		0.63	x	0.1	-	= 20.78	(79)
Sout <mark>hwest</mark> 0	.9x 0.77	×	10.8	Ξ,		31.49	1	0.63	X	0.1	=	= 14.85	(79)
									L				
Solar gain	s in watts, cal	culated	for each r	nonth			(83)m	= Sum(74)m .	(82)m				
	.32 36.32	49.7		68.98	68.48	66.02	60.		40.15	25.54	18.25	5	(83)
Total gains	s – internal an	d solar	(84)m = (7	73)m +	(83)m	, watts	<u> </u>				I	_	
(84)m= 295	5.12 307.94	310.97	306.72 2	298.2	282.45	270.25	270	.02 271.84	274.47	278.29	284.3	6	(84)
7 Mean i	nternal tempe	erature	(heating se	eason)							•	_	
	ure during he			, i i i i i i i i i i i i i i i i i i i	a area	from Tab	ole 9.	Th1 (°C)				21	(85)
	factor for gai	• •			-		,	(-)					`
	an Feb	Mar	Apr	May	Jun	Jul	A	ug Sep	Oct	Nov	Dec	2	
	99 0.99	0.97		0.77	0.56	0.4	0.4	• ·	0.88	0.98	0.99	-	(86)
Mean inte	ernal temperat	ture in l	iving area	I	low etc	$\frac{1}{2}$	I 7 in T						
(87)m= 20	·	20.85		20.99	21	21	2		20.96	20.83	20.69)	(87)
						I			20.00				
Iamnoro													
·	Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) 88)m= 20.51 20.51 20.52 20.53 20.53 20.52 20.52 20.51 (88)												
· · · · · · · · · · · · · · · · · · ·	<u> </u>	ating p 20.51		20.52	20.53	20.53	20.		20.52	20.52	20.51		(88)
(88)m= 20 Utilisation	.51 20.51	20.51	20.52 2 est of dwe	20.52 Illing, h	20.53 2,m (s	20.53	20.	53 20.52	20.52	_I	I		
(88)m= 20 Utilisation	.51 20.51	20.51	20.52 2 est of dwe	20.52	20.53	20.53	20.	53 20.52	20.52 0.86	0.97	20.51 0.99		(88) (89)
(88)m= 20 Utilisation (89)m= 0.	.51 20.51	20.51 ins for r 0.96	20.52 2 est of dwe 0.89	20.52 Illing, h 0.73	20.53 2,m (so 0.52	20.53 ee Table 0.36	20.9 9a) 0.3	53 20.52 8 0.58	0.86	_I	I		
(88)m= 20 Utilisation (89)m= 0. Mean inte	51 20.51 1 factor for gai	20.51 ins for r 0.96	20.52 2 est of dwe 0.89 he rest of	20.52 Illing, h 0.73	20.53 2,m (so 0.52	20.53 ee Table 0.36	20.9 9a) 0.3	53 20.52 8 0.58 to 7 in Tabl	0.86	_I	I		
(88)m= 20 Utilisation (89)m= 0. Mean inte	51 20.51 6 factor for gai 99 0.98 ernal temperat	20.51 ins for r 0.96 ture in t	20.52 2 est of dwe 0.89 he rest of	20.52 Iling, h 0.73 dwellir	20.53 2,m (so 0.52 ng T2 (f	20.53 ee Table 0.36 follow ste	20.9 9a) 0.3	3 20.52 8 0.58 to 7 in Tabl 53 20.52	0.86 e 9c) 20.48	0.97	0.99	0.47	(89)
(88)m= 20 Utilisation (89)m= 0. Mean inte (90)m= 20	51 20.51 a factor for gai 99 0.98 ernal temperation 12 20.2	20.51 ins for r 0.96 ture in t 20.32	20.52 2 est of dwe 0.89	20.52 Illing, h 0.73 dwellir 20.51	20.53 2,m (so 0.52 ng T2 (f 20.53	20.53 ee Table 0.36 follow ste 20.53	20.9 9a) 0.3 20.9	8 0.58 to 7 in Tabl 53 20.52	0.86 e 9c) 20.48	0.97	0.99	 	(89)
(88)m= 20 Utilisation (89)m= 0. Mean inte (90)m= 20 Mean inte	51 20.51 6 factor for gai 99 0.98 ernal temperat	20.51 ins for r 0.96 ture in t 20.32	20.52 2 est of dwe 0.89 4 he rest of 20.45 2 r the whole	20.52 Illing, h 0.73 dwellir 20.51	20.53 2,m (so 0.52 ng T2 (f 20.53	20.53 ee Table 0.36 follow ste 20.53	20.9 9a) 0.3 20.9	 20.52 20.52 8 0.58 to 7 in Tabl 53 20.52 f fLA) × T2 	0.86 e 9c) 20.48	0.97	0.99	0.47	(89)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m= 20.2		20.42	20.53	20.58	20.6	20.6	20.6	20.6	20.56	20.4	20.23		(93)
	neating req												
	ne mean int ion factor fo		•		ied at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
Ja		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	factor for g			may	••••	• •		000	•••		200		
(94)m= 0.9		0.96	0.89	0.74	0.52	0.36	0.38	0.59	0.86	0.97	0.99		(94)
Useful gai	ns, hmGm	, W = (94	4)m x (84	4)m									
(95)m= 291.	89 301.9	297.73	272.04	219.52	147.69	98.5	103.12	160.78	236.3	270.11	281.99		(95)
Monthly av	verage exte	ernal tem	perature	from Ta	able 8								
(96)m= 4.3		6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	rate for me	1	· · ·		i	- ,			-			I	
(97)m= 409.		355.23	292.22	222.47	147.78	98.51	103.12	161.08	249.27	335.19	406.46		(97)
	ating require	1							<u> </u>	<i>.</i>	00.0	l	
(98)m= 87.4	45 62.34	42.78	14.54	2.19	0	0	0	0	9.65	46.85	92.6	050.4	
							lota	l per year	(kWh/year) = Sum(9	8)15,912 =	358.4	(98)
Space hea	ating require	ement in	kWh/m ²	/year								7.2	(99)
9a. Energy	requiremer	nts – Indi	vidual h	eating s	ystems i	ncluding	micro-C	HP)					
Space he	-												
	f space hea				mentary	system						0	(201)
Fraction of	f space hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fraction of	f total hea <mark>ti</mark>	ng from	main sys	stem 1			(204) = (20	02) × [1 – ((203)] =			1	(204)
Eff <mark>icienc</mark> y	of main s <mark>p</mark> a	ace heat	ing syste	em 1								89.9	(206)
Eff <mark>icienc</mark> y	of seconda	ry/suppl	ementar <u>;</u>	y heating	g system	n, %						0	(208)
Ja	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space hea	ating require	ement (c	alculate	d above))								
87.4	45 62.34	42.78	14.54	2.19	0	0	0	0	9.65	46.85	92.6		
(211)m = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)								-	(211)
97.2	69.34	47.59	16.17	2.44	0	0	0	0	10.73	52.12	103		
		•					Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	.=	398.67	(211)
Space hea	ating fuel (s	econdar	y), kWh/	month									
= {[(98)m x	(201)] } x 1	00 ÷ (20	8)		r								
<mark>(215)m=</mark> 0	0	0	0	0	0	0	0	0	0	0	0		_
							Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u>_</u>	0	(215)
Water heat	-												
Output from					00.40	0470	05.50	00.40	440.00	440.04	400.00	l	
		120.98	106.58	103.1	90.18	84.76	95.56	96.19	110.62	119.31	128.98		
Efficiency o		r	07.07	00.70	007	00.7	0.07	00.7	00.05	07.50	00.04	86.7	(216)
(217)m= 87.9		87.51	87.07	86.76	86.7	86.7	86.7	86.7	86.95	87.58	88.01		(217)
Fuel for wa (219)m = (•												
(219)m = 151.		138.24	122.41	118.82	104.01	97.76	110.21	110.94	127.22	136.24	146.55		
L													
		-					Tota	I = Sum(21	19a) ₁₁₂ =			1496.11	(219)
Annual tot	als	•					Tota	I = Sum(2'		Nh/year		1496.11 kWh/yea	
Annual tot Space heat		ed, main	system	1			Tota	I = Sum(2′		Wh/year			

Water heating fuel used				1496.11]
Electricity for pumps, fans and electric keep-hot					
mechanical ventilation - balanced, extract or posit	ive input from ou	utside	116.96		(230a)
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =		191.96	(231)
Electricity for lighting				313.91	(232)
12a. CO2 emissions – Individual heating systems	including micro-	CHP			
	Energy kWh/year	Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	ır
Space heating (main system 1)	(211) x	0.216	=	86.11	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	323.16	(264)
Space and water heating	(261) + (262) + (26	63) + (264) =		409.27	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	99.62	(267)
Electricity for lighting	(232) x	0.519	=	162.92	(268)
Total CO2, kg/year		sum of (265)(271) =		6 <mark>71.81</mark>	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =		13.49	(273)
El rating (section 14)				91	(274)

			User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 201		;	Stroma Softwa \ddress:	re Ver			Versio	n: 1.0.4.23	
Addross I	3 Bed Flat, 219-223					nh lunct	ion I ON			
Address : 1. Overall dwelling dimer		Columati		ie, Loug	προιοαί	JII JUIICI	ION, LON			
Ground floor			Area		(1a) x	Av. He i	ight(m) 2.5	(2a) =	Volume(m³) 231.5	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	9	2.6	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	231.5	(5)
2. Ventilation rate:										
Number of chimneys		econdary eating 0	′ (] + [other	1 = [total	x 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x2	20 =	0	(6b)
Number of intermittent far	IS				Ĺ	0	x ´	10 =	0	(7a)
Number of passive vents						0	x^	10 =	0	_ (7b)
Number of flueless gas fir	es					0	X 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
Number of storeys in th Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	esent, use the value corres					uction			0	(11)
If suspended wooden fle	oor, enter 0.2 (unseal	ed) or 0.1	(sealed	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	ripped							0	(14)
Window infiltration).25 - [0.2			. (45)		0	(15)
Infiltration rate Air permeability value, o	750 overessed in sub	via motros		(8) + (10) -				araa	0	(16)
If based on air permeabilit	• • •		•	•	•		invelope	alea	0.1	(17) (18)
Air permeability value applies						is being us	sed	l	0.1	
Number of sides sheltered	k							[2	(19)
Shelter factor			(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter factor		((21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo		<u> </u>					1			
Jan Feb I	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	- i i									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	, 1 1	,	r					,		
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter an	d wind s	peed) =	: (21a) x	(22a)m					
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
		ctive air al ventila	-	rate for t	he applic	cable ca	se						0.5	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (N5)) . othe	rwise (23b) = (23a)			0.5	(23a)
				ciency in %						, (,			73.1	(23c)
			-	entilation	-					2h)m + (23b) x [[/]	1 – (23c)		(200)
(24a)m=		0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23	. 100]	(24a)
		d mech	ı anical ve	entilation	without	heat rec	L coverv (l	1 MV) (24t	(22)	1 2b)m + ()	1 23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	use ex	r tract ver	ntilation c	r positiv	e input v	ı ventilatio	n from o	utside					
,				then (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous	•	•								
	· ,	r	r <u>, ,</u>)m = (22b	· · · · · ·		, 	1	<u> </u>	r -	<u> </u>			
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
				nter (24a	<u> </u>	, 、	ŕ	,	r`´´	0.00	0.00	0.00		(25)
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramete	er:						_			
ELEN	1ENT	Gros		Openin m		Net Ar		U-val W/m2		AXU		k-value		A X k kJ/K
Window	ws Type	are <mark>a</mark>	(111-)			A ,r 10.98		/[1/(0.73)·		(W/		KJ/11-•r	`	KJ/K (27)
	ws Type							/[1/(0.73)·			H			
	ws Type					2.7		/[1/(0.73)·		1.92	2			(27)
Walls 1						2.7				1.92	╘┤╷			(27)
		34.		10.98	3	23.52		0.15	=	3.53	╡╏		\dashv	(29)
Walls 7		12.		2.7		9.8	×	0.15		1.47	╡╎		\dashv	(29)
Walls 7		23.2		2.7		20.55		0.15	=	3.08				(29)
		lements	, m²			70.25	5				—			(31)
Party v						47	×	0	=	0	[\dashv	(32)
Party fl						92.6					Ĺ		\exists	(32a)
Party c	-					92.6					Ļ		\exists	(32b)
	l wall **					146.5					Ļ			(32c)
				effective wil nternal wall			ated using	g formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	3.2	
		s, W/K			,			(26)(30) + (32) =				19.7	(33)
Heat ca	apacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	19835.	1 (34)
Therma	al mass	parame	eter (TMI	P = Cm ÷	- TFA) in	kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-			etails of the	constructi	on are not	t known p	recisely the	e indicative	e values of	TMP in Ta	able 1f		
		ad of a de				ا المعامم	/					1		
	-			lculated u			^						7.32	(36)
	abric he		are not Kr	10wn (36) =	0.00 X (3	1)			(33) +	(36) =			27.02	(37)
														` ,

Ventila	ation he	at loss c	alculate	d monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	18.55	18.39	18.23	17.42	17.26	16.44	16.44	16.28	16.77	17.26	17.58	17.91		(38)
Heat t	ransfer	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	45.57	45.41	45.25	44.44	44.27	43.46	43.46	43.3	43.79	44.27	44.6	44.92		_
Heat l	oss para	ameter (HLP), W	/m²K						Average = = (39)m ÷	Sum(39) _{1.}	12 /12=	44.4	(39)
(40)m=	0.49	0.49	0.49	0.48	0.48	0.47	0.47	0.47	0.47	0.48	0.48	0.49		
Numb	er of da	vs in mo	onth (Tab	le 1a)	1	1	1	1	1	Average =	Sum(40)1	12 /12=	0.48	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
		Į			!					ļ				
4. Wa	ater hea	ting ene	ergy requ	irement:								kWh/ye	ear:	
if TF if TF	⁻ A > 13. ⁻ A £ 13.	9, N = 1	+ 1.76 >		o(-0.0003	,		, ,-		TFA -13	.9)	66		(42)
Reduce	the annu	ge not w al average	ater usa e hot water	ge in litre [•] usage by	es per da 5% if the c	ay va,av Iwelling is	erage = designed :	(25 X N) to achieve	+ 36 a water us	se target o	97 f	.37		(43)
not mor	e that 125	5 litres per	person pe	r day (all w	vater use, l	hot and co	ld)				_			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage	in litres pe	er day for e	ach m <mark>onth</mark>	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	107.1	103.21	99.31	95.42	91.52	87.63	87.63	91.52	95.42	9 <mark>9.31</mark>	103.21	107.1		_
Energy	content o	f hot water	r used - ca	lculated m	onthly = 4.	190 x Vd,r	n x nm x E	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1168.4	(44)
(45)m=	158.83	138.92	143.35	124 <mark>.</mark> 97	119.92	103.48	95.8 <mark>9</mark>	110.03	111.35	12 <mark>9.76</mark>	141.65	153.82		
lf instar	ntaneous v	vater heat	ing at poin	t of use (ne	o hot wate	r storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	-	1531.96	(45)
(46)m=	23.82	20.84	21.5	18.75	17.99	15.52	14.38	16.5	16.7	19.46	21.25	23.07		(46)
	storage			•										
-				• •	olar or W		-		ame ves	sel		0		(47)
Other	wise if n	o stored			velling, e ncludes i			. ,	ers) ente	er '0' in (47)			
	storage nanufac		eclared	loss fact	or is kno	wn (kWł	n/dav):					0		(48)
			om Table				"day).					0		(49)
•				e, kWh/y	ear			(48) x (49)) =			0		(50)
•	-		•	•	loss fact	or is not		(-/ (-)	, 			0		(00)
		-			le 2 (kW	h/litre/da	ay)					0		(51)
			see section	ion 4.3									I	(50)
		from Ta	om Table	2h								0 0		(52) (53)
				, kWh/y	ear			(47) x (51)) x (52) v (53) -				
-	•	(54) in (-	-, πνντι/y	cai			(⁻⁺) ^ (J1)	, ^ (32) ^ (0 0		(54) (55)
	. ,	. , .	,	for each	month			((56)m = (55) × (41)	m	L	-	I	x/
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	I	ı	1	1		1	1	1	1		1	1		

If cylinder contair	ns dedicate	d solar sto	rage, (57)r	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primary circui	t loss (an	inual) fro	om Table	e 3	-		-		-		0		(58)
Primary circui					59)m = ((58) ÷ 36	65 × (41)	m					
(modified b	y factor fi	om Tab	e H5 if t	here is s	solar wat	er heatir	ng and a	cylinde	r thermo	stat)		L	
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss ca	alculated	for each	month (61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 11.85	10.7	11.83	11.42	11.78	11.38	11.74	11.77	11.4	11.81	11.45	11.85		(61)
Total heat rec	uired for	water he	eating ca	alculated	l for eacl	n month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)	m
(62)m= 170.69	149.62	155.18	136.39	131.7	114.86	107.63	121.8	122.75	141.57	153.1	165.67		(62)
Solar DHW input	calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if	FGHRS	and/or V	VWHRS	applies	, see Ap	pendix (G)	-	-			
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	vater hea	ter											
<mark>(64)m=</mark> 170.69	149.62	155.18	136.39	131.7	114.86	107.63	121.8	122.75	141.57	153.1	165.67		_
							Outp	out from wa	ater heate	r (annual)₁	12	1670.94	(64)
Heat gains fro	om water	heating,	kWh/mo		5´[0.85	× (45)m		ı] + 0.8 x	(<mark>(46)m</mark>	+ (57)m	+ (59)m]	
(65)m= 55.78	48.86	50.62	44.41	42.82	37.25	34.82	39.53	39.87	46.1	49.96	54.11		(65)
in <mark>clude</mark> (57))m in c <mark>alc</mark>	culation of	of (65)m	only if c	ylinder is	s in th <mark>e</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	Table 5	and 5a):									
Met <mark>abolic</mark> gai		5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		()
(66)m= 132.98		132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98		(66)
Lighting gains	ì		·	· ·	i	,	i		i	i	i	I	
(67)m= 30.46	27.06	22	16.66	12.45	10.51	11.36	14.76	19.82	25.16	29.37	31.31		(67)
Appliances ga	1	ulated in	Append	lix L, eq	uation L	13 or L1	3a), alsc	see Ta	ble 5			I	
(68)m= 243.78		239.94		209.23	193.13	182.38	179.85	186.22	199.79	216.92	233.02		(68)
Cooking gains	1		· ·							r	· · · · ·	I	
(69)m= 36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3		(69)
Pumps and fa	1	<u> </u>							·	·		I	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g. e	· ·			, (, 							1	
(71)m= -106.39		-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39		(71)
Water heating	g gains (T	able 5)										I	
(72)m= 74.97	72.71	68.04	61.68	57.55	51.74	46.8	53.13	55.38	61.96	69.39	72.72		(72)
Total interna	-				· · ·		n + (68)m +		1	1)m + (72)	i	1	
(73)m= 415.1	411.98	395.87	370.6	345.13	321.28	306.43	313.64	327.31	352.81	381.58	402.95		(73)
6. Solar gain			e flans for	Takle Or	and	atod a mi	tions to -	D. 10 - 1 - 1	o oraliaat		ion		
Solar gains are		-		i adie 6a a	and associ Flu		mons to co		e applicat	FF	1011.	Gains	
Orientation:	Access F Table 6d	acior	Area m²			x ole 6a	Т	g_ able 6b	Та	able 6c		Gains (W)	

Northeast 0.9x 0.77	×	2.7	x	11.28	×	0.63	x	0.1] =	1.33	(75)
Northeast 0.9x 0.77	x	2.7	x	22.97	×	0.63	x	0.1	i =	2.71	(75)
Northeast 0.9x 0.77	x	2.7	x	41.38	×	0.63	x	0.1	=	4.88	(75)
Northeast 0.9x 0.77	x	2.7	x	67.96	x	0.63	x	0.1] =	8.01	(75)
Northeast 0.9x 0.77	x	2.7	x	91.35	×	0.63	x	0.1] =	10.77	(75)
Northeast 0.9x 0.77	x	2.7	x	97.38	x	0.63	x	0.1	=	11.48	(75)
Northeast 0.9x 0.77	x	2.7	x	91.1	x	0.63	x	0.1	=	10.74	(75)
Northeast 0.9x 0.77	x	2.7	x	72.63	x	0.63	x	0.1	=	8.56	(75)
Northeast 0.9x 0.77	x	2.7	x	50.42	x	0.63	x	0.1] =	5.94	(75)
Northeast 0.9x 0.77	x	2.7	x	28.07	x	0.63	x	0.1] =	3.31	(75)
Northeast 0.9x 0.77	x	2.7	x	14.2	x	0.63	x	0.1] =	1.67	(75)
Northeast 0.9x 0.77	x	2.7	x	9.21	×	0.63	x	0.1	=	1.09	(75)
Southeast 0.9x 0.77	x	2.7	x	36.79	x	0.63	x	0.1] =	4.34	(77)
Southeast 0.9x 0.77	x	2.7	x	62.67	×	0.63	x	0.1	=	7.39	(77)
Southeast 0.9x 0.77	x	2.7	x	85.75	×	0.63	x	0.1	=	10.11	(77)
Southeast 0.9x 0.77	x	2.7	x	106.25	×	0.63	x	0.1	=	12.52	(77)
Southeast 0.9x 0.77	x	2.7	x	119.01	x	0.63	x	0.1	=	14.03	(77)
Southeast 0.9x 0.77	x	2.7	X	118.15	x	0.63	x	0.1] =	13.93	(77)
Southeast 0.9x 0.77	x	2.7	x	113.91	x	0.63	x	0.1	=	13.43	(77)
Southeast 0.9x 0.77	x	2.7	x	104.39] ×	0.63	x	0.1	=	12.31	(77)
Southeast 0.9x 0.77	x	2.7	x	92.85	x	0.63	x	0.1	=	10.95	(77)
Southeast 0.9x 0.77	x	2.7	×	69.2 <mark>7</mark>	x	0.63	x	0.1	=	8.17	(77)
Southeast 0.9x 0.77	x	2.7	x	44.07	×	0.63	x	0.1	=	5.2	(77)
Southeast 0.9x 0.77	x	2.7	x	31.49	x	0.63	x	0.1	=	3.71	(77)
Southwest0.9x 0.77	x	10.98	x	36.79]	0.63	x	0.1	=	17.64	(79)
Southwest0.9x 0.77	x	10.98	x	62.67]	0.63	x	0.1	=	30.04	(79)
Southwest0.9x 0.77	x	10.98	x	85.75]	0.63	x	0.1	=	41.11	(79)
Southwest0.9x 0.77	x	10.98	x	106.25]	0.63	x	0.1	=	50.93	(79)
Southwest0.9x 0.77	x	10.98	x	119.01]	0.63	x	0.1	=	57.05	(79)
Southwest0.9x 0.77	x	10.98	x	118.15]	0.63	x	0.1	=	56.64	(79)
Southwest _{0.9x} 0.77	x	10.98	x	113.91]	0.63	x	0.1] =	54.61	(79)
Southwest _{0.9x} 0.77	x	10.98	x	104.39]	0.63	x	0.1] =	50.04	(79)
Southwest0.9x 0.77	x	10.98	×	92.85]	0.63	x	0.1] =	44.51	(79)
Southwest0.9x 0.77	×	10.98	x	69.27]	0.63	x	0.1	=	33.21	(79)
Southwest _{0.9x} 0.77	x	10.98	x	44.07]	0.63	x	0.1] =	21.13	(79)
Southwest _{0.9x} 0.77	x	10.98	x	31.49]	0.63	x	0.1] =	15.09	(79)

Solar g	ains in	watts, ca	alculated	for eac	n month			(83)m = S	um(74)m .	(82)m			_	
(83)m=	23.31	40.14	56.09	71.47	81.85	82.05	78.77	70.91	61.4	44.68	27.99	19.89		(83)
Total g	Total gains – internal and solar (84)m = (73)m + (83)m , watts													
(84)m=	438.41	452.11	451.97	442.07	426.98	403.32	385.2	384.54	388.71	397.49	409.57	422.84		(84)
7. Mean internal temperature (heating season)														
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisation factor for gains for living area, h1,m (see Table 9a)														
Stroma ESAM 2012 VErson 1.04.25 (SAM 9.52) - http://www.stuma.com/ul Aug Sep Oct Nov Dec Page 5 of 7													e 5 of 7	

	1
(86)m= 1 1 0.99 0.98 0.9 0.69 0.5 0.52 0.77 0.97 1 1	(86)
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c)	
(87)m= 20.63 20.68 20.76 20.88 20.97 21 21 21 20.99 20.91 20.76 20.62	(87)
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C)	
(88)m= 20.53 20.53 20.53 20.54 20.54 20.55 20.55 20.55 20.55 20.54 20.54 20.53	(88)
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a)	
(89)m= 1 1 0.99 0.97 0.87 0.64 0.45 0.47 0.72 0.95 0.99 1	(89)
Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)	I
(90)m= 20.02 20.09 20.22 20.39 20.51 20.55 20.55 20.54 20.44 20.21 20.01	(90)
fLA = Living area ÷ (4) =	0.35 (91)
Many interval target and (for the sub-size duality r) of A , TA , $(A = \{1, A\}) \in TO$	
Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$ (92)m= 20.23 20.3 20.41 20.56 20.67 20.71 20.71 20.71 20.7 20.6 20.4 20.22	(92)
Apply adjustment to the mean internal temperature from Table 4e, where appropriate	(02)
(93)m= 20.08 20.15 20.26 20.41 20.52 20.56 20.56 20.56 20.55 20.45 20.25 20.07	(93)
8. Space heating requirement	
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calc	culate
the utilisation factor for gains using Table 9a	
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	
Utilisation factor for gains, hm:	,
(94)m= 1 1 0.99 0.96 0.87 0.64 0.45 0.47 0.72 0.95 0.99 1	(94)
Useful gains, hmGm , $W = (94)$ m x (84)m	
(95)m= 437.41 450.27 447.52 426.52 370.61 258.1 171.97 180.03 279.93 377.77 406.8 422.14	(95)
Monthly average external temperature from Table 8 (96)m= 4.3 4.9 6.5 8.9 11.7 14.6 16.4 14.1 10.6 7.1 4.2	(96)
Heat loss rate for mean internal temperature, Lm , $W = [(39)m \times [(93)m - (96)m]$	(30)
(97)m= 719.23 692.38 622.48 511.43 390.41 258.85 171.99 180.05 282.45 436.25 586.61 713	(97)
Space heating requirement for each month, kWh/month = $0.024 \times [(97)m - (95)m] \times (41)m$	
(98)m= 209.67 162.7 130.17 61.14 14.74 0 0 0 0 43.51 129.46 216.39	
Total per year (kWh/year) = Sum(98) ₁₅₉₁₂ =	967.79 (98)
Space heating requirement in kWh/m²/year	10.45 (99)
9a. Energy requirements – Individual heating systems including micro-CHP)	
Space heating:	
Fraction of space heat from secondary/supplementary system	0 (201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$	1 (202)
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$	1 (204)
Efficiency of main space heating system 1	89.9 (206)
Efficiency of secondary/supplementary heating system, %	0 (208)
Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec	kWh/year
Space heating requirement (calculated above)	1
209.67 162.7 130.17 61.14 14.74 0 0 0 43.51 129.46 216.39	1
$(211)m = \{ [(98)m \times (204)] \} \times 100 \div (206)$	(211)
233.23 180.98 144.8 68.01 16.39 0 0 0 0 48.4 144.01 240.7 Total (kWh/year) =Sum(211) _{1.6.51012} =	4070 50 (211)
	1076.52 (211)

Space heating fuel (secondary), kWh/month

$= \{[(08)m \times (201)]\} \times 100 + (208)$									
$= \{ [(98)m \times (201)] \} \times 100 \div (208) \\ (215)m = 0 0 0 0 0$	0 0	0	0	0	0	0	0		
	<u> </u>		-	l (kWh/yea	-	-	-	0	(215)
Water heating							I		
Output from water heater (calculated abov								I	
	31.7 114.86	107.63	121.8	122.75	141.57	153.1	165.67		_
Efficiency of water heater								86.7	(216)
	7.01 86.7	86.7	86.7	86.7	87.43	88.14	88.48		(217)
Fuel for water heating, kWh/month (219)m = $(64)m \times 100 \div (217)m$									
	1.35 132.47	124.14	140.48	141.58	161.92	173.71	187.23		
	•		Tota	l = Sum(2	19a) ₁₁₂ =		•	1906.93	(219)
Annual totals					k	Wh/yea	ŗ	kWh/yea	r
Space heating fuel used, main system 1								1076.52	
Water heating fuel used								1906.93	
Electricity for pumps, fans and electric kee	p-hot								
mechanical ventilation - balanced, extrac	t or positive i	nput fron	n outside	Э			194.17		(230a)
central heating pump:							30		(230 <mark>c</mark>)
boi <mark>ler wi</mark> th a fan-assisted flue							45		(230e)
Total electricity for th <mark>e above, kWh/year</mark>			sum	of (230a).	<mark>(2</mark> 30g) =			2 <mark>69.17</mark>	(231)
Electricity for lighting								537.95	(232)
12a. CO2 emissions – Individual heating	svstems inclu	udina mi	cro-CHF]
								_	
		ergy /h/year			kg CO	ion fac 2/kWh	tor	Emissions kg CO2/ye	
Space heating (main system 1)		1) x			0.2		=	232.53	(261)
Space heating (secondary)	(21	5) x			0.5		=	0	(263)
Water heating	(219	9) x			0.2		=	411.9	(264)
Space and water heating	(26	1) + (262)	+ (263) + ((264) =				644.42	(265)
Electricity for pumps, fans and electric kee	ep-hot (23	1) x			0.5	19	=	139.7	(267)
Electricity for lighting	(232	2) x			0.5	19	=	279.2	(268)
Total CO2, kg/year				sum o	f (265)(2	271) =		1063.32	(272)
Dwelling CO2 Emission Rate				(272)	÷ (4) =			11.48	(273)
EI rating (section 14)								90	(274)

		ι	User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 2012		;	Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
	2 Bed Flat, 219-223			Address:		nh lunat	ion I ON			
Address : 1. Overall dwelling dimer		Columato	our Lar	ne, Loug	προιοαί	in Junci	ION, LOP	NDON		
Ground floor			Area		(1a) x	Av. Hei	ight(m) 2.5	(2a) =	Volume(m ³ 192) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e))+(1n)	7	6.8	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	192	(5)
2. Ventilation rate:										
	heating h	condary eating		other	, r	total			m ³ per hou	_
Number of chimneys	0 +	0	+	0] = [] = [0		40 = 20 =	0	(6a)
Number of open flues Number of intermittent far		0		0		0		0 = 10 =	0	(6b) (7a)
Number of passive vents						0		0 =	0	(7a)
Number of flueless gas fir	es					0		40 =	0	(70)
					L	0		Air ch	anges per ho	
Infiltration due to chimney						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in th Additional infiltration	e dwelling (ns)							1]x0.1 =	0	(9) (10)
deducting areas of opening	esent, use the value corresp gs); if equal user 0.35	oonding to th	he greate	er wall area	a (after	uction			0	(11)
If suspended wooden fl		ed) or 0.1	(seale	d), else	enter 0				0	(12)
If no draught lobby, ent									0	(13)
Percentage of windows Window infiltration	and doors draught str	прреа	(0.25 - [0.2	x (14) ÷ 1	001 -			0	(14)
Infiltration rate				(8) + (10) -			+ (15) =		0	(15) (16)
Air permeability value, o	a50. expressed in cubi	ic metres						area	2	(17)
If based on air permeabilit			•	•	•				0.1	(18)
Air permeability value applies	-					is being us	sed	I	-	
Number of sides sheltered	b								1	(19)
Shelter factor				(20) = 1 - [9)] =			0.92	(20)
Infiltration rate incorporati	-		((21) = (18)	x (20) =				0.09	(21)
Infiltration rate modified for		1				_				
Jan Feb	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe				I				1		
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	· · · · ·		,				1			
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.12	0.12	0.11	0.1	0.1	0.09	0.09	0.09	0.09	0.1	0.1	0.11]	
		<i>ctive air</i> al ventila	-	rate for t	he appli	cable ca	se							(23a)
				endix N, (2	(23a) = (23a	a) x Fmv (e	equation (I	N5)), othe	rwise (23b	(23a) = (23a)			0.5	
				ciency in %						<i>(</i> 200)			0.5	(23b)
			-	-	-					2b)m + (2	23h) v [[,]	1 _ (23c)	73.1 ÷ 1001	(23c)
(24a)m=	0.25	0.25	0.25	0.24	0.23	0.22	0.22	0.22	0.23	0.23	0.24	0.24]	(24a)
										2b)m + (2	-	•]	· · ·
(24b)m=	0			0	0	0			0	0	0	0	ן	(24b)
	u whole h	I Iouse ex	I tract ver	ntilation of	r positiv	l ve input v	l ventilatio	n from o	L outside				J	
,					•	•				.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous	•					-		-	-	
1	· ,	r	r í j)m = (22l	ŕ	r Ì	, 	1	r			-	1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
1		<u> </u>		nter (24a	, <u>,</u>	<u> </u>	, <u>,</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>			i	1	()
(25)m=	0.25	0.25	0.25	0.24	0.23	0.22	0.22	0.22	0.23	0.23	0.24	0.24		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
ELEN		Gros are <mark>a</mark>		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/ł	<)	k-value kJ/m²·l		A X k kJ/K
Windov	ws Type	e 1				2.7	x1/	/[1/(0.73)-	+ 0.04] =	1.92				(27)
Windov	ws Type	92				3.6	x1/	/[1/(0.73)-	+ 0.04] =	2.55				(27)
Windov	ws Type	e 3				7.2	×1/	/[1/(0.73)-	+ 0.04] =	5.11	F.			(27)
Window	ws Type	e 4				4.94	x1/	/[1/(0.73)-	+ 0.04] =	3.5	5			(27)
Walls 1	Гуре1	5		2.7		2.3	x	0.15	=	0.35				(29)
Walls 7	Гуре2	31.	5	3.6		27.9	x	0.15	= [4.19	ז ד		$\exists \vdash$	(29)
Walls 7	ГуреЗ	22.7	75	7.2		15.55	5 X	0.15		2.33	ז ד		$\exists \vdash$	(29)
Walls 7	Гуре4	15	;	4.94		10.06	3 X	0.15	=	1.51	ז ר		= =	(29)
Total a	rea of e	elements	, m²			74.25	5	μ						(31)
Party v	vall					37.5	x	0	=	0				(32)
Party f	loor					76.8			I		L		\dashv	(32a)
Party c	eiling					76.8					L L		\dashv	(32b)
-	ul wall **					117					L L		\dashv	(32c)
* for win	dows and	l roof wind		effective wi nternal wal		alue calcul	ated using	g formula 1	!/[(1/U-valı	ıe)+0.04] a	L s given in	paragraph	L 1 3.2	(1 - 7
		ss, W/K :						(26)(30)) + (32) =				21.45	(33)
		Cm = S(•	-					((28)	(30) + (32	2) + (32a).	(32e) =	16870.	

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

250

Indicative Value: Medium

(35)

		00	are not kr	nown (36) =	= 0.05 x (3	:1)							-	_
Total	fabric he	at loss							(33) +	(36) =			29.44	(37)
Ventila	ation hea	at loss c	alculated	d monthly	y				(38)m	= 0.33 × ((25)m x (5))		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	15.99	15.85	15.7	14.97	14.82	14.09	14.09	13.94	14.38	14.82	15.12	15.41		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	45.44	45.29	45.15	44.41	44.27	43.53	43.53	43.39	43.83	44.27	44.56	44.85		
			•			•	•			Average =	Sum(39)1	12 /12=	44.38	(39)
	oss para	ameter (H	HLP), W	/m²K	r	i	i		(40)m	= (39)m ÷	· (4)		1	
(40)m=	0.59	0.59	0.59	0.58	0.58	0.57	0.57	0.56	0.57	0.58	0.58	0.58		-
Numb	er of day	ys in mo	nth (Tab	le 1a)	-	-	-	-		Average =	Sum(40)₁	12 /12=	0.58	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31]	(41)
			-			-	-			-	-		-	
4. W	ater hea	ting ene	rav requ	irement:								kWh/ye	ear:	
		Ŭ											1	
	ned occι =∆			/ [1 - evo	(_0 0003		-130)2)] + 0.0	1013 v (TFA -13		2.4		(42)
	-A £ 13.		+ 1.707	ιι-exp	(-0.0000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	A-10.9	()2)] + 0.0) / 10/0	11 A - 13.	.3)			
								(25 x N)				.18		(43)
		-		usage by a r day (all w		-	-	to achieve	a water us	se target o	ť			
not moi												1	1	
Hot way	Jan	Feb	Mar Mar	Apr ach month	May Vd m - fa	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	_							-					1	
(44)m=	100.3	96.66	93.01	89.36	85.71	82.07	82.07	85.71	89.36	93.01	96.66	100.3		
Energy	content of	f hot water	used - ca	lculated mo	onthly $= 4$.	190 x Vd,r	m x nm x L	OTm / 3600		Total = Su hth (see Ta			1094.21	(44)
(45)m=	148.75	130.09	134.25	117.04	112.3	96.91	89.8	103.05	104.28	121.52	132.65	144.05		
										Total = Su	m(45) ₁₁₂ =	=	1434.68	(45)
lf instar	ntaneous v	vater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)				1	
(46)m=		19.51	20.14	17.56	16.85	14.54	13.47	15.46	15.64	18.23	19.9	21.61		(46)
	storage) includir	na anv so	olar or M	WHRS	storage	within sa	ame ves	مما		0	1	(47)
	-	. ,		ank in dw			-			001		0	J	(47)
	•	•			•			ombi boil	ers) ente	er '0' in (47)			
	storage										,,			
a) If r	nanufac	turer's de	eclared l	oss facto	or is kno	wn (kWł	n/day):					0]	(48)
Temp	erature f	actor fro	m Table	2b								0		(49)
Energ	y lost fro	om watei	· storage	e, kWh/ye	ear			(48) x (49) = 0					ĺ	(50)
				cylinder l										
		-		rom Tabl	e 2 (kW	h/litre/da	ay)					0		(51)
	munity h ne factor	-		on 4.3									1	
	erature f			2b								0		(52) (53)
				, kWh/ye	oor			(47) x (51)	V (50) v (53) -]	
-	(50) or		-	, i.vvi // yt	501			(۱۵) ۸ (۱۰	, ~ (0~) ^ (0		(54) (55)
	·/-·	, ,	.,									~	J	()

Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	er contains	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3	-				-		0		(58)
	•	•	,	for each		59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	n month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	11.84	10.68	11.8	11.4	11.76	11.36	11.73	11.75	11.38	11.79	11.43	11.83		(61)
Total h	neat requ	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	ו
(62)m=	160.59	140.77	146.05	128.44	124.06	108.27	101.53	114.79	115.66	133.31	144.09	155.88		(62)
Solar DI	-IW input o	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	WHRS	applies	, see Ap	pendix (G)	i	i	i	1	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter	r	1		r						1	
(64)m=	160.59	140.77	146.05	128.44	124.06	108.27	101.53	114.79	115.66	133.31	144.09	155.88		-
											r (annual)₁		1573.43	(64)
				, kWh/m					-		1	- · ·]	
(65)m=	52.42	45.93	47.59	41.76	40.28	35.06	32.79	37.2	37.52	43.35	46.97	50.86		(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ater is fr	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table {	5 and 5a):									
Metab	olic gain	s (Table		tts				i						
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		()
(66)m=	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97	119.97		(66)
•	<u> </u>			ppendix			, ·	· · · · · · · · · · · · · · · · · · ·				r	1	()
				14.21				12.6	16.91	21.47	25.06	26.72		(67)
		· · · · · · · · · · · · · · · · · · ·	1	n Append	· · · ·			, 		1		i	1	()
(68)m=		214.83	209.27	197.43	182.49	168.45	159.07	156.86	162.42	174.26	189.2	203.24		(68)
	<u> </u>	· · · · · · · · · · · · · · · · · · ·	r	ppendix	· · ·		, I	1	1	r			1	()
(69)m=	35	35	35	35	35	35	35	35	35	35	35	35		(69)
•	r	ns gains	r <u>`</u>	<u>, </u>			r	r	r	1	1	r	1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses	<u> </u>	· · · · · · · · · · · · · · · · · · ·	· · ·	tive valu	es) (Tab	· · · · · · · · · · · · · · · · · · ·	i	i	i	i	i	i	1	
(71)m=	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97	-95.97		(71)
Water	<u> </u>	gains (T	able 5)							1	1		1	
(72)m=	70.45	68.34	63.96	58.01	54.14	48.7	44.07	50	52.11	58.27	65.23	68.35		(72)
Total i	r	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m +	(70)m + (7	1)m + (72)	m	1	
(73)m=	371.06	368.25	354	331.64	309.25	288.11	274.82	281.45	293.43	315.99	341.48	360.3		(73)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation: Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x 0.77	x	3.6	x	11.28	x	0.63	x	0.1	=	1.77	(75)
Northeast 0.9x 0.77	x	3.6	x	22.97	x	0.63	x	0.1	=	3.61	(75)
Northeast 0.9x 0.77	x	3.6	x	41.38	x	0.63	x	0.1	=	6.5	(75)
Northeast 0.9x 0.77	x	3.6	x	67.96	x	0.63	x	0.1	=	10.68	(75)
Northeast 0.9x 0.77	x	3.6	x	91.35	x	0.63	x	0.1	=	14.36	(75)
Northeast 0.9x 0.77	x	3.6	x	97.38	x	0.63	x	0.1	=	15.31	(75)
Northeast 0.9x 0.77	x	3.6	x	91.1	x	0.63	x	0.1	=	14.32	(75)
Northeast 0.9x 0.77	x	3.6	x	72.63	x	0.63	x	0.1	=	11.41	(75)
Northeast 0.9x 0.77	x	3.6	x	50.42	x	0.63	x	0.1	=	7.92	(75)
Northeast 0.9x 0.77	x	3.6	x	28.07	x	0.63	x	0.1	=	4.41	(75)
Northeast 0.9x 0.77	x	3.6	x	14.2	x	0.63	x	0.1	=	2.23	(75)
Northeast 0.9x 0.77	x	3.6	x	9.21	x	0.63	x	0.1	=	1.45	(75)
Southwest _{0.9x} 0.77	x	2.7	x	36.79		0.63	x	0.1	=	4.34	(79)
Southwest _{0.9x} 0.77	x	2.7	x	62.67		0.63	x	0.1	=	7.39	(79)
Southwest _{0.9x} 0.77	x	2.7	x	85.75		0.63	x	0.1	=	10.11	(79)
Southwest0.9x 0.77	x	2.7	×	106.25		0.63	х	0.1	=	12.52	(79)
Southwest <mark>0.9x</mark> 0.77	x	2.7	x	119.01		0.63	x	0.1	=	14.03	(79)
Southwest _{0.9x} 0.77	x	2.7	x	118.15		0.63	x	0.1	=	13.93	(79)
Southwest _{0.9x} 0.77	x	2.7	x	113.91		0.63	x	0.1	=	13.43	(79)
Southwest _{0.9x} 0.77	x	2.7	x	104.39		0.63	x	0.1	=	12.31	(79)
Southwest _{0.9x} 0.77	x	2.7	x	92.85		0.63	x	0.1	=	10.95	(79)
Southwest0.9x 0.77	x	2.7	x	69.27		0.63	x	0.1	=	8.17	(79)
Southwest _{0.9x} 0.77	x	2.7	x	44.07		0.63	x	0.1	=	5.2	(79)
Southwest _{0.9x} 0.77	x	2.7	x	31.49		0.63	x	0.1	=	3.71	(79)
West 0.9x 0.77	x	4.94	x	19.64	x	0.63	x	0.1	=	4.24	(80)
West 0.9x 0.77	x	4.94	x	38.42	x	0.63	x	0.1	=	8.29	(80)
West 0.9x 0.77	x	4.94	x	63.27	x	0.63	x	0.1	=	13.65	(80)
West 0.9x 0.77	x	4.94	x	92.28	x	0.63	x	0.1	=	19.9	(80)
West 0.9x 0.77	x	4.94	x	113.09	x	0.63	x	0.1	=	24.39	(80)
West 0.9x 0.77	x	4.94	x	115.77	x	0.63	x	0.1	=	24.97	(80)
West 0.9x 0.77	x	4.94	x	110.22	x	0.63	x	0.1	=	23.77	(80)
West 0.9x 0.77	x	4.94	x	94.68	x	0.63	x	0.1	=	20.42	(80)
West 0.9x 0.77	x	4.94	x	73.59	x	0.63	x	0.1	=	15.87	(80)
West 0.9x 0.77	x	4.94	x	45.59	x	0.63	x	0.1	=	9.83	(80)
West 0.9x 0.77	x	4.94	x	24.49	x	0.63	x	0.1	=	5.28	(80)
West 0.9x 0.77	x	4.94	x	16.15	x	0.63	x	0.1	=	3.48	(80)
Northwest 0.9x 0.77	x	7.2	x	11.28	x	0.63	x	0.1	=	3.55	(81)
Northwest 0.9x 0.77	x	7.2	x	22.97	x	0.63	x	0.1	=	7.22	(81)
Northwest 0.9x 0.77	x	7.2	x	41.38	x	0.63	x	0.1	=	13.01	(81)

Northwest 0.9x 0.77	x	7.2	x	6	7.96	×	0.63	×	0.1	=	21.36	(81)
Northwest 0.9x 0.77	x	7.2	x	9	1.35	x	0.63	×	0.1	=	28.71	(81)
Northwest 0.9x 0.77	x	7.2	x	9	7.38	x	0.63	x	0.1	=	30.61	(81)
Northwest 0.9x 0.77	x	7.2	x	ę	91.1	x	0.63	×	0.1	=	28.64	(81)
Northwest 0.9x 0.77	x	7.2	x	7	2.63	x	0.63	x	0.1	=	22.83	(81)
Northwest 0.9x 0.77	x	7.2	x	5	0.42	x	0.63	x	0.1	=	15.85	(81)
Northwest 0.9x 0.77	x	7.2	x	2	8.07	x [0.63	×	0.1	=	8.82	(81)
Northwest 0.9x 0.77	x	7.2	x	·	14.2) × [0.63	x	0.1	=	4.46	(81)
Northwest 0.9x 0.77	x	7.2	x	9	9.21	x	0.63	x	0.1	=	2.9	(81)
Solar gains in watts, calcula	ated	for each mont	h			(83)m	= Sum(74)m .	(82)m				
(83)m= 13.89 26.5 43.2		64.47 81.49		84.81	80.15	66.9	97 50.59	31.23	17.17	11.54		(83)
Total gains – internal and s	olar	(84)m = (73)m) + (83)m	, watts				-i			
(84)m= 384.95 394.75 397.	26	396.11 390.74	3	72.92	354.98	348.	42 344.02	347.22	358.65	371.84		(84)
7. Mean internal temperate	ure ((heating seaso	n)									
Temperature during heatir	ng pe	eriods in the liv	ving	area f	from Tab	ole 9,	Th1 (°C)				21	(85)
Utilisation factor for gains	for li	iving area, h1,i	n (s	ee Ta	ble 9a)							
Jan Feb M	ar	Apr May	,	Jun	Jul	Αι	ug Sep	Oct	Nov	Dec		
(86)m= 1 1 1		0.98 0.92		0.73	0.54	0.5	7 0.83	0.98	1	1		(86)
Mean internal temperature	e in li	iving area T1	follc	ow ste	ps 3 to 7	, 7 in T	able 9c)					
(87)m= 20.49 20.54 20.0	-	20.8 20.93	_	20.99	21	21	<u> </u>	20.84	20.64	2 <mark>0.48</mark>		(87)
Temperature during heatir		ariode in rest o	f du	volling	from To	blo 0	Th2 (PC)		1			
(88)m = 20.44 20.44 20.44		20.45 20.45		20.46	20.46	20.4		20.45	20.45	20.44		(88)
			_							-		
Utilisation factor for gains	-	0.98 0.9	<u> </u>	,m (se 0.68	0.47	9a) 0.5	1 0.78	0.97		4		(89)
									1	1		(03)
Mean internal temperature	-					r <u> </u>		<u>, </u>			I	
(90)m= 19.74 19.82 19.9	97	20.2 20.38		20.45	20.46	20.4		20.25	19.97	19.73		(90)
							1	tla = Livi	ng area ÷ (4) =	0.34	(91)
Mean internal temperature	e (for	r the whole dw	ellin	ig) = fl	_A × T1	+ (1 -	– fLA) × T2		_			
(92)m= 20 20.07 20.	2	20.4 20.57	2	20.64	20.64	20.6	65 20.62	20.45	20.2	19.99		(92)
Apply adjustment to the m	ean	·	eratu	ure fro	m Table	4e, \	where appro	opriate			I	
(93)m= 19.85 19.92 20.0		20.25 20.42		20.49	20.49	20.	5 20.47	20.3	20.05	19.84		(93)
8. Space heating requirem												
Set Ti to the mean interna the utilisation factor for ga		•	inec	d at ste	ep 11 of	Table	e 9b, so tha	at Ti,m=	(76)m an	d re-calc	ulate	
	ar	Apr May	,	Jun	Jul	Αι	ıg Sep	Oct	Nov	Dec		
Utilisation factor for gains,				Jun	501		ig Dep			Dec		
(94)m= 1 1 0.9	-	0.97 0.89	Т	0.68	0.48	0.5	1 0.79	0.97	0.99	1		(94)
Useful gains, hmGm , W =	: (94							<u> </u>				
(95)m= 384.13 393.4 394.	<u> </u>	385.5 349.53	2	53.73	169.44	177.	52 270.38	336.17	356.74	371.23		(95)
Monthly average external	temp	perature from	Tab	le 8	L	1	I	I			I	
(96)m= 4.3 4.9 6.5	5	8.9 11.7		14.6	16.6	16.	4 14.1	10.6	7.1	4.2		(96)
Heat loss rate for mean in	terna	al temperature	, Ln	ר, W =	=[(39)m :	x [(93	3)m– (96)m]				
(97)m= 706.48 680.2 611.	88	504.2 385.84	2	56.37	169.55	177.	69 279.34	429.51	577.14	701.36		(97)

Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97))m – (95)m] x (4 ⁻	1)m			
(98)m=	239.83	192.73	161.95	85.47	27.01	0	0	0	0	69.44	158.69	245.62		
								Tota	l per year	(kWh/year	r) = Sum(9	8)15,912 =	1180.74	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year								15.37	(99)
9a. Ene	ergy rec	luiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
-	e heatir	-												_
						ementary	-						0	(201)
Fraction of space heat from main system(s) $(202) = 1 - (201) =$								1	(202)					
Fraction of total heating from main system 1 $(204) = (202) \times [1 - (203)] =$									1	(204)				
Efficiency of main space heating system 1									89.9	(206)				
Efficie	ncy of s	seconda	ry/suppl	ementar	y heatin	g system	ı, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ar
Space			· · · ·	alculate	1	1								
	239.83	192.73	161.95	85.47	27.01	0	0	0	0	69.44	158.69	245.62		
(211)m ז			r	00 ÷ (20	r									(211)
L	266.78	214.38	180.15	95.07	30.05	0	0		0 I (kWh/yea	77.25	176.52	273.21	1010.00	(011)
Cross	k e e tim	n fuel (a	a na mala m		no o n th			TULA	ii (KVVII/yee		- · · / _{15,1012}		1313.39	(211)
•			00 ÷ (20	y), kWh/ 8)	month									
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		
Ľ						r		Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	=	0	(215)
Wat <mark>er</mark>	heating													
Out <mark>put</mark>				ulated al										
	160.59	140.77	146.05	128.44	124.06	108.27	101.53	114.79	115.66	13 <mark>3.31</mark>	144.09	155.88		
г		ater hea 88.52		07.05	07.00	00.7	00.7	00.7	00.7	07 77	00.05	00.00	86.7	(216)
(217)m=	88.59		88.35	87.95	87.26	86.7	86.7	86.7	86.7	87.77	88.35	88.63		(217)
			kWh/m) ÷ (217)											
(219)m=		159.03	165.3	146.03	142.18	124.88	117.1	132.4	133.4	151.89	163.09	175.88		
								Tota	I = Sum(2	19a) ₁₁₂ =			1792.45	(219)
	I totals	(.)								k\	Wh/year		kWh/yea	r
Space heating fuel used, main system 1									1313.39					
Water I	neating	fuel use	d										1792.45	
Electric	ity for p	umps, f	ans and	electric	keep-ho	t								
mechanical ventilation - balanced, extract or positive input from outside 173.81								173.81		(230a)				
central heating pump: 30								30		(230c)				
boiler with a fan-assisted flue								45		(230e)				
Total electricity for the above, kWh/year sum of (230a)(230g) =									248.81	(231)				
Electricity for lighting										(232)				
	•												459.05	(232)
-12a. C	702 em	issions -	– Individ	ual heat	ing syste	ems inclu	iding mi	cro-CHP	,					

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
Space heating (main system 1)	(211) x	0.216 =	283.69 (261)	
Space heating (secondary)	(215) x	0.519 =	0 (263)	
Water heating	(219) x	0.216 =	387.17 (264)	
Space and water heating	(261) + (262) + (263) + (264) =		670.86 (265)	
Electricity for pumps, fans and electric keep-hot	(231) x	0.519 =	129.13 (267)	
Electricity for lighting	(232) x	0.519 =	238.25 (268)	
Total CO2, kg/year	sum	n of (265)(271) =	1038.24 (272)	
Dwelling CO2 Emission Rate	(272	13.52 (273)		
El rating (section 14)			89 (274)	

User Details:												
Assessor Name: Software Name:										on: 1.0.4.23		
A dalama a a	Property Address: Flat 6 Address : 1 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON											
Address : 1. Overall dwelling dimer		Coldnard	bour Lar	ne, Loug	poroug	gn Junct	ion, LOP	IDON				
Ground floor	310113.		-	Area(m²) Av. Height(m) 51.7 (1a) x 2.5				(2a) =	Volume(m ³) 129.25	(3a)		
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 51.7 (4)												
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$									129.25	(5)		
2. Ventilation rate:												
		econdary eating	/ ·	other		total			m ³ per hour			
Number of chimneys	0 +	0] + L	0		0		-0 =	0	(6a)		
Number of open flues	0 +	0	+	0] = [0	x 2	20 =	0	(6b)		
Number of intermittent fan	S					0	x 1	0 =	0	(7a)		
Number of passive vents						0	x 1	0 =	0	(7b)		
Number of flueless gas fires										(7c)		
Air chaInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0$ \div (5) =									anges per hou	ur](8)		
If a pressurisation test has be					ontinue fro			. (0)	0			
Number of storeys in the dwelling (ns) Additional infiltration									0	(9) (10)		
Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction									0	(11)		
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35												
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0									0	(12)		
If no draught lobby, enter 0.05, else enter 0									0	(13)		
Percentage of windows and doors draught stripped									0	(14)		
Window infiltration			0.25 - [0.2	0	(15)							
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$									0	(16)		
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$								2	(17)			
•	•					is being us	sed		0.1	(18)		
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered 3									3	(19)		
Shelter factor			((20) = 1 - [0.075 x (1	9)] =			0.78	(20)		
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$									0.08	(21)		
Infiltration rate modified fo	r monthly wind speed	1										
Jan Feb M	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec				
Monthly average wind spe	ed from Table 7											
(22)m= 5.1 5 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7				
Wind Factor (22a)m = (22)m ÷ 4											
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18				

Adjust	ed infiltr	ation rat	e (allowi	ng for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m	-	-			
.	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N. (2	23b) = (23a) × Fmv (e	equation (N	N5)) . othei	rwise (23b) = (23a)			0.5	(23a)
					allowing for					, (,			73.1	(23c)
			-	-	with hea					2h)m + (23h) 🗙 [′	1 – (23c)		(200)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(24a)
		d mech	I anical ve	Intilation	without	heat rec	L coverv (N	I /\\/) (24b	l = (22)	l 2b)m + (;	1 23h)			
(24b)m=		0		0	0	0	0	0	0	0	0	0		(24b)
		ouse ex	ract ver	tilation o	or positiv	re input v	ventilatio	n from c	utside					
,					c) = (23b	•				5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from I	oft					
	<u> </u>	n = 1, th	en (24d)	m = (22	b)m othe	rwise (2	, 	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
				<u>``</u>	i) or (24b	, ,	, <u>,</u>	<i>,</i>	· ,	r	1	1	I	()
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	oaramet	er:									
		Gros area		Openin	lgs	Net Ar A ,r		U-valı W/m2		A X U (W/I		k-value		A X k kJ/K
Windo	ws Type		(111-)			13.5		[1/(0.73)+		9.58		NJ/111-1	`	(27)
	ws Type							[1/(0.73)+	Ļ	2.07	H			(27)
Walls				40.5		2.925				_	H r			
		29	,	13.5	=	15.5		0.15		2.33	닉 ¦			(29)
Walls		5		2.92	2	2.08	×	0.15		0.31	╡┟		\dashv	(29)
Walls		18		0		18	×	0.15	=	2.7				(29)
	area of e	iements	, m²			52								(31)
Party						44.25	5 X	0	=	0	L		\exists	(32)
Party f						51.7					Ĺ		$_$ $_$	(32a)
Party	Ũ					51.7					Ĺ			(32b)
Interna	al wall **					77								(32c)
					indow U-va Is and part		ated using	formula 1.	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	1 3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				16.99	(33)
Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	13882.3	(34)
Therm	al mass	parame	ter (TM	- Cm -	+ TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	ign assess used inste				constructi	ion are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
					using Ap	pendix ł	<						7.96	(36)
	-		,		= 0.05 x (3	-	-						1.30	
	abric he			. ,					(33) +	(36) =			24.95	(37)
Ventila	ation hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	9.95	9.87	9.79	9.37	9.29	8.88	8.88	8.79	9.04	9.29	9.46	9.62		(38)
Heat tr	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3				
(39)m=	34.9	34.82	34.73	34.32	34.24	33.82	33.82	33.74	33.99	34.24	34.4	34.57		
Hoot lo		motor (l	HLP), W/	/m2k						Average = = (39)m ÷		12 /12=	34.3	(39)
(40)m=	0.68	0.67	0.67	0.66	0.66	0.65	0.65	0.65	0.66	= (39)III ÷	0.67	0.67		
(10)	0.00	0.01	0.07	0.00	0.00	0.00	0.00	0.00		Average =			0.66	(40)
Numbe	r of day	/s in mo	nth (Tab	le 1a)										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter hea	ting ene	rgy requi	irement:								kWh/ye	ar:	
if TF.	A > 13.	upancy, l 9, N = 1 9, N = 1		: [1 - exp	(-0.0003	349 x (TF	FA -13.9))2)] + 0.()013 x (TFA -13.		74		(42)
Annual	averag	je hot wa		ge in litre								.53		(43)
		-		usage by r day (all w		-	-	to achieve	a water us	se target o	f			
	Jan	Feb	, Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate				ach month				<u> </u>	Geb	001	1100	Dec		
(44)m=	<mark>8</mark> 3.08	80.06	77.04	74.02	71	67.98	67.98	71	74.02	77.04	80.06	83.08		
										L Total = Su			906.36	(44)
Energy o	ontent of	^t hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)Tm / 3600) kWh/mor	nth (<mark>see Ta</mark>	bles 1b, 1	c, 1d)		
(45)m=	123.21	107.76	111.2	96.95	93.02	80.27	74.38	85.36	86.37	10 <mark>0.66</mark>	109.88	119.32		_
lf instant	aneous w	vater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46		Tota <mark>l = Su</mark>	m(45) ₁₁₂ =	-	1188.38	(45)
(46)m=	18.48	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
Water														. ,
Storage	e volum	ne (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		0		(47)
	•	•		ank in dw	•			` '	`	(0) : (4 >			
Water :			not wate	er (this ir	iciudes i	nstantar	ieous co	indi idmo	ers) ente	er 'O' in (47)			
	-		eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	rature f	actor fro	m Table	2b			• /					0		(49)
Energy	lost fro	om water	· storage	e, kWh/ye	ear			(48) x (49)) =			0		(50)
,				cylinder l										
		-	ee secti	rom Tabl	e 2 (kW	h/litre/da	iy)					0		(51)
	•	from Ta		011 4.5								0		(52)
			m Table	2b								0		(53)
Energy	lost fro	om water	· storage	e, kWh/ye	ear			(47) x (51)	x (52) x (53) =		0		(54)
Enter	(50) or	(54) in (5	55)									0		(55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
If cylinde	r contain	s dedicate	d solar sto	orage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	кН	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)

Primary circuit loss (annual) from Table 3 Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m													(58)
(modified	by factor f	rom Tab	le H5 if t	here is s	solar wat	ter heati	ng and a	a cylinde	r thermo	stat)			
(59)m= 0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi loss o	calculated	for each	month	(61)m =	(60) ÷ 30	65 × (41)m						
(61)m= 11.77	7 10.62	11.74	11.35	11.72	11.32	11.69	11.71	11.34	11.73	11.37	11.76		(61)
Total heat re	quired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × 0	(45)m +	(46)m +	(57)m +	(59)m + (6 ⁻	1)m
(62)m= 134.9	8 118.38	122.94	108.29	104.74	91.59	86.07	97.06	97.71	112.39	121.25	131.09		(62)
Solar DHW inpu	ut calculated	using App	endix G o	r Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additior	nal lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)				_	
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ater											
(64)m= 134.9	8 118.38	122.94	108.29	104.74	91.59	86.07	97.06	97.71	112.39	121.25	131.09		
							Outp	out from w	ater heate	r (annual)₁	12	1326.51	(64)
Heat gains f	rom water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	n + (61)m	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 43.9 ⁴	38.49	39.91	35.07	33.86	29.52	27.66	31.31	31.55	36.4	39.38	42.62		(65)
include (5	7)m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	leating	
5. Internai	gains (see	e Table {	5 and 5a):									
Metabolic ga	ains (Table	e 5). Wat	ts										
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 87.0 ⁴	I 87.01	87 .01	87.01	87.01	87.01	87.01	87.01	87.01	8 <mark>7.01</mark>	87.01	87.01		(66)
Ligh <mark>ting g</mark> air	is (calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	llso see [:]	Table 5	•				
(67)m= 18.06	6 16.04	13.04	9.88	7.38	6.23	6.73	8.75	11.75	14.92	17.41	18.56		(67)
Appliances g	gains (calo	culated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5				
(68)m= 151.6	5 153.22	149.26	140.81	130.16	120.14	113.45	111.88	115.84	124.28	134.94	144.96		(68)
Cooking gai	ns (calcula	ated in A	ppendix	L, equat	tion L15	or L15a), also se	e Table	5		•	I	
(69)m= 31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7		(69)
Pumps and	fans gains	(Table	5a)				<u>.</u>					I	
(70)m= 3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tab	le 5)							I	
(71)m= -69.6		-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61		(71)
Water heatir	ng gains (Table 5)										1	
(72)m= 59.02	<u> </u>	53.64	48.71	45.51	41	37.17	42.08	43.82	48.93	54.69	57.28		(72)
Total intern	al gains =				(66)	u m + (67)m	⊥ ∩ + (68)m -	۱ + (69)m + ۱	! (70)m + (7	1)m + (72))m	1	
(73)m= 280.8		268.05	251.5	235.15	219.48	209.46	214.81	223.52	240.23	259.15	272.9		(73)
6. Solar gai		1	1	1	1	1	I	1	1	1	I		
Solar gains ar		using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	ne applicat	ole orientat	tion.		
Orientation:	Access I	actor	Area		Flu	x		q		FF		Gains	

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9	0.77 0.77	×	2.92	x	11.28	x	0.63	×	0.1	=	1.44	(75)
Northeast 0.9	0.77 0.77	×	2.92	×	22.97	x	0.63	x	0.1] =	2.93	(75)

N 1 <i>A</i> 1 <i>A</i>					_		-						
Northeast 0.9	•	X	2.9	2	×	41.38	×	0.63	×	0.1	=	5.28	(75)
Northeast 0.9	•	×	2.9	2	×	67.96	×	0.63	×	0.1	=	8.68	(75)
Northeast 0.9		×	2.9	2	×	91.35	X	0.63	×	0.1	=	11.67	(75)
Northeast 0.9	•	X	2.9	2	×	97.38	×	0.63	×	0.1	=	12.44	(75)
Northeast 0.9	x 0.77	x	2.9	2	×	91.1	x	0.63	×	0.1	=	11.63	(75)
Northeast 0.9	× 0.77	x	2.9	2	x	72.63	×	0.63	×	0.1	=	9.27	(75)
Northeast 0.9	x 0.77	x	2.9	2	x	50.42	×	0.63	x	0.1	=	6.44	(75)
Northeast 0.9	x 0.77	x	2.9	2	x	28.07	×	0.63	x	0.1	=	3.58	(75)
Northeast 0.9	x 0.77	x	2.9	2	x	14.2	×	0.63	×	0.1	=	1.81	(75)
Northeast 0.9	x 0.77	x	2.9	2	x	9.21	x	0.63	×	0.1	=	1.18	(75)
Southwesto.	x 0.77	x	13.	5	x	36.79		0.63	x	0.1	=	21.69	(79)
Southwesto.	x 0.77	x	13.	5	x	62.67		0.63	x	0.1	=	36.94	(79)
Southwesto.	x 0.77	x	13.	5	x	85.75		0.63	×	0.1	=	50.54	(79)
Southwesto.	x 0.77	x	13.	5	x	106.25]	0.63	x	0.1	=	62.62	(79)
Southwesto.	x 0.77	x	13.	5	x	119.01]	0.63	x	0.1	=	70.14	(79)
Southwest0.9	x 0.77	x	13.	5	x	118.15]	0.63	×	0.1	=	69.64	(79)
Southwest0.9	x 0.77	x	13.	5	x	113.91	1	0.63	×	0.1	=	67.14	(79)
Southwesto.	x 0.77	x	13.	5	×	104.39		0.63	x	0.1	=	61.53	(79)
Southwest <mark>0.9</mark>	x 0.77	×	13.	5	x	92.85	1.	0.63	x	0.1		54.73	(79)
Southwest0.9	× 0.77	×	13.	5	x	69.27	1	0.63	x	0.1	=	40.83	(79)
Sout <mark>hwest</mark> 0.9	× 0.77	x	13.	5	×	44.07	Ī/	0.63	x	0.1	=	25.98	(79)
Sout <mark>hwest</mark> 0.9	x 0.77	×	13.	5	× 「	31.49	1	0.63	x	0.1	=	18.56	(79)
Solar gains	in watts, cal	culated	for each	n month			(83)m	n = Sum(74)m	(<mark>8</mark> 2)m				
(83)m= 23.1	3 39.87	55.83	71.3	81.81	82.0	78.77	70	.8 61.17	44.41	27.79	19.74		(83)
Total gains	 internal an 	nd solar	(84)m =	. ,	+ (83								
(84)m= 303.	95 318.51	323.87	322.81	316.96	301.	55 288.23	285	.61 284.68	284.64	286.93	292.63		(84)
7. Mean in	ternal tempe	erature ((heating	season)								
Temperatu	re during he	eating po	eriods in	the livi	ng ar	ea from Ta	ble 9	, Th1 (°C)				21	(85)
Utilisation	factor for gai	ins for li	iving are	a, h1,m	i (see	Table 9a)				_			
Ja	n Feb	Mar	Apr	May	Ju	n Jul	A	ug Sep	Oct	Nov	Dec		
(86)m= 1	0.99	0.99	0.97	0.89	0.7	0.52	0.5	54 0.79	0.96	0.99	1		(86)
Mean inter	nal tempera	ture in l	iving are	ea T1 (fo	ollow	steps 3 to	7 in T	able 9c)					
(87)m= 20.4	4 20.52	20.64	20.79	20.93	20.9	9 21	2	1 20.98	20.84	20.61	20.43		(87)
Temperatu	re during he	ating p	eriods in	rest of	dwel	ing from Ta	able 9	9. Th2 (°C)	-	-			
(88)m= 20.3	T	20.37	20.37	20.37	20.3	<u> </u>	20.	- i	20.37	20.37	20.37]	(88)
	factor for gai	ine for r	rest of du	velling	1 h2 m		. 0.2)	I	I			1	
(89)m= 1	0.99	0.99	0.96	0.86	0.6	<u>`</u>	<u>, 9a)</u>	47 0.73	0.95	0.99	1	1	(89)
												1	
Mean inter (90)m= 19.6	nal tempera	19.89	20.12	20.3	ing 12	<u> </u>	eps 3	1	le 9c) 20.18	19.87	19.59	1	(90)
(90)11= 19.0	19.72	19.09	20.12	20.3	20.3	20.30	20.						
									fIA – Liv	ing area ÷ (4	4) =	0.51	(91)

(92)m=			ar the such	ala duva	lling) f	I A T4	. /1 fl	A) TO					
(02)=	internal temp 20.03 20.12	`	20.46	20.62	1100) = 1 20.69	20.69	+ (1 — IL 20.69	A) × 12	20.51	20.25	20.01		(92)
L Apply	adjustment to									20.20	20.01		()
(93)m=	19.88 19.97		20.31	20.47	20.54	20.54	20.54	20.52	20.36	20.1	19.86		(93)
L	ce heating re	quiremen	t										
	to the mean			re obtain	ed at st	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	ulate	
the uti	lisation factor		1 – – –		r							1	
L	Jan Feb		Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	tion factor for	<u> </u>	1	0.00	0.00	0.40	0.40	0.74	0.05	0.00	4		(94)
(94)m=	1 0.99	0.98	0.95	0.86	0.66	0.46	0.49	0.74	0.95	0.99	1		(94)
(95)m=	gains, hmGr 302.56 316.0	`	308.07	+)III 273.6	198.24	133.27	139.63	211.74	269.34	283.86	291.6		(95)
Ľ	ly average ex					100.21	100.00	2	200.01	200.00	20110		()
(96)m=	4.3 4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	oss rate for m	ean interr	nal tempo	erature,	LLL M , W :	I =[(39)m :	x [(93)m·	– (96)m]				
(97)m=	543.83 524.7	3 473.01	391.71	300.21	200.82	133.41	139.85	218.37	334.29	447.12	541.43		(97)
Space	heating requ	irement fo	r each n	nonth, k\	Nh/mon	th = 0.02	24 x [(97))m – (95)m] x (4 ⁻	1)m			
(98)m=	179.51 140.2	5 114.92	60.22	19.8	0	0	0	0	48.32	117.54	185.87		
_							Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	866.43	(98)
Sp <mark>ace</mark>	heating requ	irement ir	n kWh/m²	/year								16.76	(99)
9a. Ene	rgy requirem	ents – Ind	ividual h	eating sv	vstems i	ncluding	micro-C	HP)					
	heating:				7								
Fractic	on of space h	eat from s	econdar	y/supple	mentary	' system						0	(201)
Fractio	on of space h	eat from n	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fractio	on of total hea	ting from	main sys	stem 1			(204) = (20	02) × [1 –	(203)] =			1	
Efficie	ncy of main s	nace heat											(204)
Efficie		pube neu	ting syste	em 1 📃								89.9	(204)
	ncy of second		• •		g systen	n, %							
Г	- 1	lary/suppl	ementar	y heating			Aug	Sep	Oct	Nov	Dec	89.9 0	(206) (208)
[Space	Jan Fetherating requ	lary/suppl	ementar Apr	y heating May	Jun	n, % Jul	Aug	Sep	Oct	Nov	Dec	89.9	(206) (208)
[Space	Jan Fet	lary/suppl Mar irement (d	ementar Apr	y heating May	Jun		Aug 0	Sep 0	Oct 48.32	Nov 117.54	Dec 185.87	89.9 0	(206) (208)
	Jan Fet heating requ	dary/suppl Mar irement (0 114.92	Apr Calculate 60.22	y heating May d above) 19.8	Jun	Jul						89.9 0	(206) (208)
	Jan Fel heating requ 179.51 140.2	dary/suppl Mar irement (0 114.92 204)] } x ^	Apr Calculate 60.22	y heating May d above) 19.8	Jun	Jul						89.9 0	(206) (208) ear
	Jan Fel heating requ 179.51 140.2 = {[(98)m x (2	dary/suppl Mar irement (0 114.92 204)] } x ^	ementar Apr calculate 60.22	y heating May d above) 19.8	Jun) 0	Jul 0	0	0	48.32 53.75	117.54 130.75	185.87 206.75	89.9 0	(206) (208) ear
(211)m	Jan Fel heating requ 179.51 140.2 = {[(98)m x (2	Hary/suppl Mar irement (d 114.92 204)] } x ^ 1 127.83	Apr calculate 60.22 100 ÷ (20 66.98	y heating May d above) 19.8 06) 22.03	Jun) 0	Jul 0	0	0	48.32 53.75	117.54 130.75	185.87 206.75	0 kWh/ye	(206) (208) ear (211)
(211)m Space	Jan Feb heating requ 179.51 140.2 = {[(98)m x (2000)] 199.67 156.0	dary/suppl Mar irement (d 114.92 204)] } x 1 127.83 (secondal)	ementar Apr calculate 60.22 100 ÷ (20 66.98	y heating May d above) 19.8 06) 22.03	Jun) 0	Jul 0	0	0	48.32 53.75	117.54 130.75	185.87 206.75	0 kWh/ye	(206) (208) ear (211)
(211)m Space	Jan Feb heating requ 179.51 140.2 = {[(98)m x (100) 199.67 156.0 heating fuel	dary/suppl Mar irement (d 114.92 204)] } x 1 127.83 (secondal)	ementar Apr calculate 60.22 100 ÷ (20 66.98	y heating May d above) 19.8 06) 22.03	Jun) 0	Jul 0	0 Tota 0	0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0	117.54 130.75 211) _{15,1012} 0	185.87 206.75 -	0 kWh/ye	(206) (208) (208) (211) (211)
(211)m [Space = {[(98)	Jan Feb heating requ 179.51 140.2 = {[(98)m x (x) 199.67 156.0 heating fuel m x (201)] } x	dary/suppl irement (114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20	ementar Apr calculate 60.22 100 ÷ (20 66.98	y heating May d above) 19.8 06) 22.03 month	Jun 0 0	Jul 0	0 Tota 0	0 0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0	117.54 130.75 211) _{15,1012} 0	185.87 206.75 -	0 kWh/ye	(206) (208) ear (211)
(211)m (211)m = {[(98)] (215)m= Water H	Jan Fet heating requ 179.51 140.2 = {[(98)m x (100) 199.67 156.0 heating fuel m x (201)] } x 0 0	dary/suppl Mar irement (r 5 114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 08) 0	y heating May d above) 19.8 06) 22.03 month 0	Jun 0 0	Jul 0	0 Tota 0	0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0	117.54 130.75 211) _{15,1012} 0	185.87 206.75 -	89.9 0 kWh/ye	(206) (208) (208) (211) (211)
(211)m (211)m = {[(98)] (215)m= Water H	Jan Fet heating requ 179.51 140.2 = {[(98)m x (i 199.67 156.0 heating fuel m x (201)] } x 0 0	dary/suppl dary/suppl irement (c 5 114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 0 0	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 08) 0	y heating May d above) 19.8 06) 22.03 month 0	0 0	Jul 0 0 0	0 Tota 0 Tota	0 I (kWh/yea 0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0 ar) =Sum(2	117.54 130.75 211) _{15,1012} 0 215) _{15,1012}	185.87 206.75 = 0	89.9 0 kWh/ye	(206) (208) (208) (211) (211)
(211)m Space = {[(98); (215)m= Water H Output	Jan Feb heating requ 179.51 140.2 = {[(98)m x (100) 199.67 156.0 heating fuel m x (201)] } x 0 0 heating fuel m x (201)] } x 0 0 heating fuel 134.98 118.3	dary/suppl dary/suppl irement (d 5 114.92 204)] } x ' 1 127.83 (secondar 100 ÷ (20 0 eater (calc 3 122.94	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 08) 0	y heating May d above) 19.8 06) 22.03 month 0	Jun 0 0	Jul 0	0 Tota 0	0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0	117.54 130.75 211) _{15,1012} 0	185.87 206.75 -	0 kWh/ye 963.78	(206) (208) ear (211) (211) (211)
(211)m (211)m (215)m= (215)m= (215)m= (215)m= (215)m= (215)m= (215)m= (215)m= (215)m= (215)m= (211)m	Jan Fet heating requ 179.51 140.2 = {[(98)m x (i 199.67 156.0 heating fuel m x (201)] } x 0 0 heating fuel m x (201)] } x 0 0 heating fuel 134.98 118.3 cy of water here	dary/suppl dary/suppl irement (c 5 114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 eater (calc 3 122.94 eater	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 08) 0 culated a 108.29	y heating May d above) 19.8 06) 22.03 month 0 0 bove) 104.74	Jun 0 0 0 0 91.59	Jul 0 0 0 86.07	0 Tota 0 Tota 97.06	0 I (kWh/yea 0 I (kWh/yea 97.71	48.32 53.75 ar) =Sum(2 0 ar) =Sum(2 112.39	117.54 130.75 211) _{15,1012} 0 215) _{15,1012} 121.25	185.87 206.75 = 0 = 131.09	89.9 0 kWh/ye	(211) (211) (215) (216)
(211)m (211)m = {[(98); (215)m= Water H Output Efficien (217)m=	Jan Fet heating requ 179.51 140.2 = {[(98)m x (199.67) 156.0 heating fuel 156.0 heating fuel 0 m x (201)] } x 0 0 0 heating fuel 118.3 from water he 134.98 134.98 118.3 cy of water h 88.5	dary/suppl dary/suppl irement (n 5 114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 eater (calc 3 122.94 eater 88.22	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 0 culated a 108.29 87.82	y heating May d above) 19.8 06) 22.03 month 0	0 0	Jul 0 0 0	0 Tota 0 Tota	0 I (kWh/yea 0 I (kWh/yea	48.32 53.75 ar) =Sum(2 0 ar) =Sum(2	117.54 130.75 211) _{15,1012} 0 215) _{15,1012}	185.87 206.75 = 0	0 kWh/ye 963.78	(206) (208) ear (211) (211) (211)
(211)m (211)m = {[(98); (215)m= Water H Output Efficien (217)m= Fuel for	Jan Fet heating requ 179.51 140.2 = {[(98)m x (i 199.67 156.0 heating fuel m x (201)] } x 0 0 heating fuel m x (201)] } x 0 0 heating fuel 134.98 118.3 cy of water here	dary/suppl dary/suppl irement (c 114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 200 ÷ (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20 0) (20) (2	ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 0 culated a 108.29 87.82 onth	y heating May d above) 19.8 06) 22.03 month 0 0 bove) 104.74	Jun 0 0 0 0 91.59	Jul 0 0 0 86.07	0 Tota 0 Tota 97.06	0 I (kWh/yea 0 I (kWh/yea 97.71	48.32 53.75 ar) =Sum(2 0 ar) =Sum(2 112.39	117.54 130.75 211) _{15,1012} 0 215) _{15,1012} 121.25	185.87 206.75 = 0 = 131.09	0 kWh/ye 963.78	(211) (211) (215) (216)
(211)m (211)m = {[(98); (215)m= Water H Output Efficien (217)m= Fuel for	Jan Fet heating requ 179.51 140.2 = {[(98)m x (100) 199.67 156.0 heating fuel m x (201)] } x 0 0 heating fuel m x (201)] } x 0 0 heating fuel m x (201)] } x 0 0 heating fuel 134.98 118.3 cy of water heatin 88.5 88.41 water heatin = (64)m x 1	dary/suppl irement (114.92 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 204)] 0 204)] } x ^ 1 127.83 (secondar 100 ÷ (20 0 204)] 8 204)] ementar Apr calculate 60.22 100 ÷ (20 66.98 ry), kWh/ 0 culated a 108.29 87.82 onth	y heating May d above) 19.8 06) 22.03 month 0 0 bove) 104.74	Jun 0 0 0 0 91.59	Jul 0 0 0 86.07	0 Tota 0 Tota 97.06 86.7	0 I (kWh/yea 0 I (kWh/yea 97.71	48.32 53.75 ar) =Sum(2 0 ar) =Sum(2 112.39 87.64 128.25	117.54 130.75 211) _{15,1012} 0 215) _{15,1012} 121.25	185.87 206.75 = 0 = 131.09	0 kWh/ye 963.78	(211) (211) (215) (216)	

Annual totals		kWh/year	kWh/year
Space heating fuel used, main system 1			963.78
Water heating fuel used			1512.5
Electricity for pumps, fans and electric keep-ho	t		
mechanical ventilation - balanced, extract or p	oositive input from outside	121	.42 (230a)
central heating pump:		3	0 (230c)
boiler with a fan-assisted flue		4	5 (230e)
Total electricity for the above, kWh/year	sum of (230a)(230g) =	196.42 (231)
Electricity for lighting			318.91 (232)
12a. CO2 emissions – Individual heating syste	ems including micro-CHP		
	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year
Space heating (main system 1)	(211) x	0.216 =	208.18 (261)
Space heating (secondary)	(215) x	0.519 =	0 (263)
Water heating	(219) x	0.216 =	326.7 (264)
Space and water heating	(261) + (262) + (263) + (264) =	534.88 (265)

(231) x

(232) x

0.519

0.519

sum of (265)...(271) :

(272) ÷ (4) =

101.94

165.52

802.33

15.52

89

(267)

(268)

(272)

(273)

(274)

Electricity for pumps, fans and electric keep-hot

Electricity for lighting

Total CO2, kg/year

El rating (section 14)

Dwelling CO2 Emission Rate

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa Address:	re Ver			Versio	n: 1.0.4.23	
Address :	2 Bed Flat, 219-223					nh lunct	ion I ON			
1. Overall dwelling dimer		Columan		ne, Loug	προιοαί	gri Junci				
Ground floor			Area 8		(1a) x	Av. He	ight(m) 2.5	(2a) =	Volume(m³) 211.75	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)	8	4.7	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	211.75	(5)
2. Ventilation rate:										
Number of chimneys		econdary eating 0	, , , , , , , , , , , , , , , , , , ,	other 0] = [total	× 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s		J L_			0	x 1	10 =	0	(7a)
Number of passive vents					Ē	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	ange <mark>s per</mark> ho	ur
Infiltration due to chimney					Ę	0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the		ed, proceed	to (17), o	otherwise c	ontinue fro	om (9) to (0	(9)
Additional infiltration) – fan ete el en timb en f		0.05 ([(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre	sent, use the value corres				•	uction		l	0	(11)
deducting areas of opening		ed) or 0.1	l (seale	d), else	enter 0			[0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	ripped							0	(14)
Window infiltration			(0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -					0	(16)
Air permeability value, c			•	•		etre of e	nvelope	area	2	(17)
If based on air permeabilit	-					:- b - :			0.1	(18)
Air permeability value applies Number of sides sheltered		i been done	e or a deg	ree all per	meability	is being us	seu	I	0	(19)
Shelter factor				(20) = 1 - [0.075 x (1	9)] =			1	(20)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x (20) =				0.1	(21)
Infiltration rate modified fo	r monthly wind speed							I		
Jan Feb M	/lar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allow	ing for sl	nelter an	d wind s	peed) =	= (21a) x	(22a)m					
	0.13	0.12	0.12	0.11	0.11	0.1	0.1	0.09	0.1	0.11	0.11	0.12		
		c <i>tive air</i> al ventila	-	rate for t	he appli	cable ca	se							- (220)
				endix N (2	(23a) = (23a	a) x Emv (e	equation (N5)), othe	rwise (23h	(23a) = (23a)			0.8	
		• •	0 11	. (, (, ,		m Table 4h	,	<i>,)</i> = (200)			0.8	
					Ū		,	HR) (24a	,	2h)m + ('	23h) v [[.]	1 – (23c)	73.	1 (230)
(24a)m=		0.26	0.26	0.24	0.24	0.23	0.23	0.23	0.23	0.24	0.25	0.25]]	(24a)
· · ·								MV) (24b					J	
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0	1	(24b)
· · ·	whole h	use ex	tract ver	ntilation of	r positiv	input v	ı ventilati	on from o	L outside				J	
,					•	•		lc) = (22k		.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
,					•	•		on from I		_			-	
	· ·	,	r <u>`</u>	r È	ŕ	, `	, <u> </u>	0.5 + [(2	r	<u> </u>		<u> </u>	1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
			î .	<u> </u>	í .	ŕ	, <u>,</u>	1d) in box	1 /	0.04	0.05	0.05	1	(05)
(25)m=	0.26	0.26	0.26	0.24	0.24	0.23	0.23	0.23	0.23	0.24	0.25	0.25	J	(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramet	er:									
ELEN		Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/ł	<)	k-value kJ/m²·		A X k kJ/K
Window	ws Type	e 1				8.91	x1	/[1/(0.73)-	+ 0.04] =	6.32				(27)
Windov	ws Type	2				1.28	X	/[1/(0.73)-	+ 0.04] =	0.91				(27)
Windov	ws Type	93				11.02	5 <mark>x</mark> 1	/[1/(0.73)-	+ 0.04] =	7.82				(27)
Windov	ws Type	e 4				7.2	اx	/[1/(0.73)-	+ 0.04] =	5.11				(27)
Window	ws Type	e 5				3.15	۲x	/[1/(0.73)-	+ 0.04] =	2.23				(27)
Walls 7	Гуре1	27	,	8.91		18.09) x	0.15	=	2.71] [(29)
Walls 7	Гуре2	32.	5	1.28	3	31.22	<u>x</u>	0.15	=	4.68	ז ר		= F	(29)
Walls 7	ГуреЗ	14.	5	11.0	2	3.48	x	0.15	=	0.52	ז ר		= F	(29)
Walls 7	Гуре4	22	2	3.15	5	18.85	5 X	0.15	=	2.83	i F		ΞĒ	(29)
Walls 7	Гуре5	9		7.2		1.8	x	0.15		0.27	i F		ΞĒ	(29)
Roof		84.	7	0		84.7	x	0.11		9.32	i F		ΞĒ	(30)
Total a	rea of e	lements	s, m²			189.7	,							(31)
Party v	vall					17.5	×	0	=	0				(32)
Party fl	loor					84.7		L	1					(32a)
-	ıl wall **				126.5					L [\dashv	(32c)	
				effective wi nternal wal		alue calcul		g formula 1	/[(1/U-valı	ue)+0.04] a	L Is given in	paragrapl	ш Ц h 3.2	

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	42.72	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	14177.7	(34)
Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m ² K	Indicative Value: Medium	250	(35)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

can be u	used inste	ad of a de	tailed calc	ulation.										
Therm	al bridg	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						15.63	(36)
if details	of therma	al bridging	are not kn	own (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			58.35	(37)
Ventila	tion hea	at loss ca	alculated	monthl	ý		-		(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	18.31	18.13	17.96	17.09	16.91	16.04	16.04	15.86	16.39	16.91	17.26	17.61		(38)
Heat ti	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	76.66	76.49	76.31	75.44	75.26	74.39	74.39	74.22	74.74	75.26	75.61	75.96		
		motor (L	יאי ים ור	/m21/						Average = = (39)m ÷	Sum(39) _{1.}	.12 /12=	75.4	(39)
	0.91	meter (H	0.9	i	0.89	0.99	0.88	0.88		= (39)III ÷		0.0		
(40)m=	0.91	0.9	0.9	0.89	0.89	0.88	0.88	0.88	0.88		0.89	0.9	0.00	
Numbe	er of day	/s in moi	nth (Tab	le 1a)					,	Average =	Sum(40)₁	.12/12=	0.89	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ater hea	ting ener	rav reau	irement:								kWh/ye	ear:	
		ipancy, I		[1 ovp	(0 0003		- 120)2)] + 0.0	012 v (*	TEA 12	2.	55		(42)
	A £ 13.		+ 1.70 X	[i - exp	(-0.0003	949 X (11	-A - 13.9)2)] + 0.0	013 X (IFA -13.	.9)			
			ater usag	ge in litre	es per da	y Vd,av	erage =	(25 x N)	+ 36		94	.67		(43)
						-	7	to achieve	a water us	se target o	f			
notmore		litres per p	berson per	day (all w	aler use, r	iot and col								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres per	day for ea	ach month	Vd,m = fai	ctor from I	able 1c x	(43)						
(44)m=	104.13	100.35	96.56	92.77	88.99	85.2	85.2	88.99	92.77	96.56	100.35	104.13		_
Enorm	contont of	botwator	upod ool	aulated m	opthly - 1	100 v Vd r	л v nm v Г	Tm / 2600			$m(44)_{112} =$		1136.02	(44)
)Tm / 3600					I	
(45)m=	154.43	135.06	139.37	121.51	116.59	100.61	93.23	106.98	108.26	126.17	137.72	149.56		
lf instan	taneous w	vater heatii	ng at point	of use (no	hot water	·storage).	enter 0 in	boxes (46)		l otal = Su	m(45) ₁₁₂ =		1489.5	(45)
(46)m=	23.16	20.26	20.91	18.23	17.49	15.09	13.98	16.05	16.24	18.93	20.66	22.43		(46)
	storage		20.91	10.25	17.45	15.05	15.50	10.05	10.24	10.95	20.00	22.43		(40)
	-		includir	ng any so	olar or W	/WHRS	storage	within sa	me ves	sel)		(47)
If com	munity h	eating a	ind no ta	ınk in dw	velling, e	nter 110	litres in	(47)			•			
Otherv	vise if no	o stored	hot wate	er (this in	icludes i	nstantar	neous co	mbi boil	ers) ente	ər '0' in (47)			
	storage													
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):				()		(48)
Tempe	erature f	actor fro	m Table	2b							()		(49)
		m water	-					(48) x (49)	=		()		(50)
,		urer's de age loss											l	(51)
		leating s				-/ III C/Ud	·y))		(51)
	•	from Tal									()		(52)
Tempe	erature f	actor fro	m Table	2b)		(53)

•		m water (54) in (5	-	, kWh/ye	ear			(47) x (51)) x (52) x (53) =		0		(54) (55)
	. ,	. , .		for each	month			((56)m = (55) × (41)r	n		•	I	()
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(56)
	-	-	-	-	-	-		-	7)m = (56)	m where (-	-	J lix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Prima	y circuit	loss (ar	nual) fro	om Table	e 3		-					0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	ı cylinde	r thermo	stat)		1	
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 36	65 × (41))m			-	-		
(61)m=	11.85	10.69	11.82	11.41	11.77	11.37	11.74	11.76	11.39	11.8	11.45	11.84		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × (45)m +	(46)m +	(57)m +	(59)m + (61)r	n
(62)m=	166.28	145.76	151.19	132.92	128.36	111.98	104.96	118.74	119.65	137.97	149.17	161.4		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	: H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)				1	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Outpu	t from w	ater hea	ter										1	
(64)m=	166.28	145.76	151.19	132.92	128.36	111.98	104.96	118.74	119.65	137.97	149.17	161.4		_
									out from wa				1628.38	(64)
Heat g	ains fro	m water	heating.	kWh/m	onth 0.2	5 ⁄ [0.85	× (45)m	1 + (61)m	ו <mark>] + 0.8 x</mark>	: [(46)m	+ (57)m	+ (59)m]	
(65)m=	54.31	47.58	49.3	43.25	41.71	36.3	33.93	38.51	38.84	44.9	48.65	52.69		(65)
inclu	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. In	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	s (Table	5), Wat	ts										
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3		(66)
Lightin	<u> </u>	` <u> </u>	· · · · ·	·	· ·	ion L9 o	,. I	· · · · · · · · · · · · · · · · · · ·				1	1	
(67)m=	26.77	23.78	19.34	14.64	10.94	9.24	9.98	12.98	17.42	22.12	25.81	27.52		(67)
•••		· · · · · · · · · · · · · · · · · · ·	ı —	· · ·	· · ·		1	· ·	see Tal		1	1	1	
(68)m=	228.98	231.36	225.37	212.62	196.53	181.41	171.31	168.93	174.92	187.66	203.76	218.88		(68)
Cookir		<u>`</u>			· · ·	· · · · · · · · · · · · · · · · · · ·	,), also se	e Table	5			1	
(69)m=	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73		(69)
Pumps	s and fai	ns gains	(Table \$	ōa)	i	i	i	i			i	i	1	
(70)m=	3	3	3	3	3	3	3	3	3	3	3	3		(70)
Losse	s e.g. ev	aporatic	n (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84		(71)
Water	heating	gains (T	able 5)								-			
(72)m=	73	70.81	66.26	60.08	56.06	50.41	45.61	51.76	53.95	60.35	67.58	70.82		(72)
Total i	internal	gains =				(66)	m + (67)m	n + (68)m +	+ (69)m + (70)m + (7	1)m + (72))m		
(73)m=	392.94	390.14	375.16	351.53	327.73	305.25	291.09	297.86	310.48	334.32	361.34	381.41		(73)
6. So	lar gains	S:												

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9	0.77	x	1.28	x	11.28	×	0.63	x	0.1] =	0.63	(75)
Northeast 0.9	0.77	x	1.28	x	22.97	x	0.63	x	0.1	=	1.28	(75)
Northeast 0.9	0.77	x	1.28	x	41.38	×	0.63	x	0.1	=	2.31	(75)
Northeast 0.9	0.77	x	1.28	x	67.96	x	0.63	x	0.1	=	3.8	(75)
Northeast 0.9	0.77	x	1.28	x	91.35	x	0.63	x	0.1	=	5.1	(75)
Northeast 0.9	0.77	x	1.28	x	97.38	×	0.63	x	0.1	=	5.44	(75)
Northeast 0.9	0.77	x	1.28	x	91.1	×	0.63	x	0.1	=	5.09	(75)
Northeast 0.9	0.77	x	1.28	x	72.63	x	0.63	x	0.1	=	4.06	(75)
Northeast 0.9	0.77	x	1.28	x	50.42	x	0.63	x	0.1	=	2.82	(75)
Northeast 0.9	0.77	x	1.28	x	28.07	x	0.63	x	0.1	=	1.57	(75)
Northeast 0.9	0.77	x	1.28	x	14.2	×	0.63	x	0.1] =	0.79	(75)
Northeast 0.9	0.77	x	1.28	x	9.21	x	0.63	x	0.1	=	0.51	(75)
Southeast 0.9	0.77	x	3.15	x	36.79	x	0.63	x	0.1	=	5.06	(77)
Southeast 0.9	0.77	x	3.15	x	62.67	x	0.63	x	0.1	=	8.62	(77)
Southeast 0.9	0.77	x	3.15	x	85.75	×	0.63	x	0.1	=	11.79	(77)
Southeast 0.9	0.77	x	3.15	×	106.25	x	0.63	х	0.1	=	14.61	(77)
Southeast 0.9	0.77	x	3.15	x	119.01	x	0.63	x	0.1] =	16.37	(77)
Southeast 0.9	0.77	x	3.15	х	118.15	×	0.63	x	0.1	=	16.25	(77)
Southeast 0.9	(0.7 <mark>7</mark>	x	3.15	x	113.91	x	0.63	x	0.1	=	15.67	(77)
Southeast 0.9	0.77	x	3.15	x	104.3 <mark>9</mark>	x	0.63	x	0.1	=	14.36	(77)
Southeast 0.9	0.77	x	3.15	x	92.85	×	0.63	x	0.1	=	12.77	(77)
Southeast 0.9	0.77	x	3.15	x	69.27	x	0.63	x	0.1	=	9.53	(77)
Southeast 0.9	0.77	x	3.15	x	44.07	×	0.63	x	0.1	=	6.06	(77)
Southeast 0.9	0.77	x	3.15	x	31.49	x	0.63	x	0.1	=	4.33	(77)
Southwest0.9	0.77	x	8.91	x	36.79		0.63	x	0.1	=	14.31	(79)
Southwest0.9	0.77	x	8.91	x	62.67		0.63	x	0.1	=	24.38	(79)
Southwest0.9	0.77	x	8.91	x	85.75		0.63	x	0.1	=	33.36	(79)
Southwest0.9	0.77	x	8.91	x	106.25		0.63	x	0.1	=	41.33	(79)
Southwest0.9	0.77	x	8.91	x	119.01		0.63	x	0.1	=	46.3	(79)
Southwest0.9	0.77	x	8.91	x	118.15		0.63	x	0.1	=	45.96	(79)
Southwest0.9	0.77	x	8.91	x	113.91		0.63	x	0.1	=	44.31	(79)
Southwest0.9	0.77	x	8.91	x	104.39		0.63	x	0.1	=	40.61	(79)
Southwest0.9	••••	x	8.91	x	92.85		0.63	x	0.1	=	36.12	(79)
Southwest0.9	0.77	x	8.91	x	69.27		0.63	x	0.1	=	26.95	(79)
Southwest0.9	0.77	x	8.91	x	44.07		0.63	x	0.1	=	17.14	(79)
Southwest0.9	0.77	x	8.91	x	31.49		0.63	x	0.1	=	12.25	(79)
West 0.9	0.77	x	7.2	x	19.64	×	0.63	x	0.1	=	6.17	(80)
West 0.9	0.77	x	7.2	x	38.42	×	0.63	x	0.1	=	12.08	(80)
West 0.9	0.77	x	7.2	x	63.27	x	0.63	x	0.1	=	19.89	(80)

West 0 9x		_		٦		٦		٦				
0.07	0.77	×	7.2	× 	92.28	X T	0.63	×	0.1	=	29.01	(80)
	0.77	×	7.2] × 1	113.09	X T	0.63	×	0.1	=	35.55	(80)
West 0.9x	0.77	×	7.2] × T	115.77	X T	0.63	×	0.1	=	36.39	(80)
West 0.9x	0.77	×	7.2] ×	110.22	X	0.63	×	0.1	=	34.65	(80)
West 0.9x	0.77	×	7.2	×	94.68	X	0.63	×	0.1	=	29.76	(80)
West 0.9x	0.77	×	7.2	×	73.59	X	0.63	×	0.1	=	23.13	(80)
West 0.9x	0.77	×	7.2	×	45.59	X	0.63	×	0.1	=	14.33	(80)
West 0.9x	0.77	x	7.2	×	24.49	x	0.63	x	0.1	=	7.7	(80)
West 0.9x	0.77	x	7.2	×	16.15	x	0.63	x	0.1	=	5.08	(80)
Northwest 0.9x	0.77	x	11.02	×	11.28	x	0.63	x	0.1	=	5.43	(81)
Northwest 0.9x	0.77	x	11.02	×	22.97	x	0.63	x	0.1	=	11.05	(81)
Northwest 0.9x	0.77	x	11.02	x	41.38	x	0.63	x	0.1	=	19.92	(81)
Northwest 0.9x	0.77	x	11.02	×	67.96	x	0.63	x	0.1	=	32.71	(81)
Northwest 0.9x	0.77	x	11.02	x	91.35	x	0.63	x	0.1	=	43.97	(81)
Northwest 0.9x	0.77	x	11.02	x	97.38	x	0.63	x	0.1	=	46.88	(81)
Northwest 0.9x	0.77	x	11.02	×	91.1	x	0.63	x	0.1	=	43.85	(81)
Northwest 0.9x	0.77	x	11.02	×	72.63	x	0.63	x	0.1	=	34.96	(81)
Northwest 0.9x	0.77	x	11.02	X	50.42	х	0.63	x	0.1	=	24.27	(81)
Northwest 0.9x	0.77	×	11.02	X	28.07	x	0.63	x	0.1	- 1	13.51	(81)
Nort <mark>hwest</mark> 0.9x	0.77	×	11.02	x	14.2	Ī×	0.63	x	0.1	=	6.83	(81)
Nort <mark>hwest</mark> 0.9x	0.77	×	11.02	Īx	9.21	1 x	0.63	x	0.1	=	4.44	(81)
					0.21		0.00		0.1			(
		7			0.21	J	0.00		0.1			
Solar <u>gains in</u>	watts, calc			th		4	n = Sum(74)m		0.1			
Solar gains in (83)m= 31.61				_	50.92 143.56	4	n = Sum(74)m			26.61		(83)
	57.41	ulated	for each mor 121.46 147.2	9 1	50.92 143.56	(83)m	n = Sum(74)m	(82)m				
(83)m= 31.61	57.41	ulated	for each mor 121.46 147.2	9 1 n + (50.92 143.56	(83)m	n = Sum(74)m .74 99.11	(82)m	38.53			
(83)m= 31.61 Total gains – i (84)m= 424.55	57.41 Internal and 447.55	culated 87.27 d solar 162.43	for each mon 121.46 147.2 (84)m = (73)r	9 1 n + (1 4	50.92 143.56 83)m , watts	(83)m 123	n = Sum(74)m .74 99.11	 (82)m 65.88	38.53	26.61		(83)
(83)m= 31.61 Total gains – (84)m= 424.55 7. Mean inte	57.41 internal and 447.55 4	ulated 87.27 d solar 462.43	for each mor 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating seas	9 1 n + (1 4 on)	50.92 143.56 83)m , watts	(83)m 123 421	n = Sum(74)m .74 99.11 1.6 409.59	 (82)m 65.88	38.53	26.61	21	(83)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inte Temperature	57.41 internal and 447.55 mal temper during hea	culated 87.27 d solar 162.43 rature (ating po	for each mor 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating seas	9 1 m + (1 4 on)	50.92 143.56 83)m , watts 56.17 434.65 area from Ta	(83)m 123 421	n = Sum(74)m .74 99.11 1.6 409.59	 (82)m 65.88	38.53	26.61		(83) (84)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inte Temperature	57.41 internal and 447.55 mal temper during hea	culated 87.27 d solar 162.43 rature (ating po	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease eriods in the l	9 1 n + (1 4 on) iving ,m (s	50.92 143.56 83)m , watts 56.17 434.65 area from Ta	(83)m 123 421 ble 9	n = Sum(74)m .74 99.11 1.6 409.59	 (82)m 65.88	38.53	26.61		(83) (84)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inter Temperature Utilisation fac	57.41 internal and 447.55 mal temper during hea ctor for gain	culated 87.27 d solar 462.43 rature (ating penns for li	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease) eriods in the leiving area, h1	9 1 m + (1 4 on) iving ,m (s y	50.92 143.56 83)m , watts 56.17 434.65 area from Ta ee Table 9a)	(83)m 123 421 ble 9	1 = Sum(74)m .74 99.11 1.6 409.59 , Th1 (°C) ug Sep		38.53	26.61		(83) (84)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inte Temperature Utilisation fac (86)m= 1	57.41 internal and 447.55 a during hea ctor for gain Feb 1	Ad solar 462.43 rature (ating pe ns for li Mar 1	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease) eriods in the living area, h1 Apr Ma 0.99 0.97	9 1 m + (1 4 on) ving ,m (s y	50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul 0.88 0.72	(83)m 123 421 ble 9 A 0.7	1 = Sum(74)m .74 99.11 1.6 409.59 , Th1 (°C) ug Sep 76 0.94		38.53 399.86 Nov	26.61 408.01 Dec		(83) (84) (85)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inte Temperature Utilisation fac (86)m= 1	57.41 internal and 447.55 during hea ctor for gain Feb 1 al temperat	Ad solar 462.43 rature (ating pe ns for li Mar 1	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease) eriods in the living area, h1 Apr Ma 0.99 0.97	9 1 n + (1 4 on) iving ,m (s y (follc	50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul	(83)m 123 421 ble 9 A 0.7	I = Sum(74)m .74 99.11 I.6 409.59 I.6 409.59 , Th1 (°C) ug Sep 76 0.94 Table 9c)		38.53 399.86 Nov 1	26.61 408.01 Dec		(83) (84) (85)
(83)m= 31.61 Total gains – i (84)m= 424.55 7. Mean inter Temperature Utilisation fac (86)m= 1 Mean interna (87)m= 20.01	57.41internal and447.55447.55a during headctor for gainFeb1al temperati20.09	culated 87.27 d solar 462.43 rature (ating pe ns for li Mar 1 ure in l 20.25	for each mon 121 46 147.2 $(84)m = (73)r$ 472.99 475.0 472.99 475.0 (heating sease) eriods in the leving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72	9 1 m + (1 4 on) iving ,m (s y (follo 2 2	50.92 143.56 83)m , watts 56.17 434.65 area from Talee Table 9a) Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.98	(83)m 123 421 ble 9 A 0.7 7 in T 20.	I = Sum(74)m .74 99.11 I.6 409.59 I.6 409.59 , Th1 (°C) ug Sep 76 0.94 Table 9c) 97 20.85		38.53 399.86 Nov 1	26.61 408.01 Dec 1		(83) (84) (85) (86)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean interverting Temperature Utilisation fac $(86)m = 1$ Mean interva $(87)m = 20.01$ Temperature	57.41 internal and 447.55 4 rnal temper e during heat ctor for gain Feb 1 al temperati 20.09 e during heat	Aulated 87.27 d solar 462.43 rature (ating points for ling Mar 1 ure in l 20.25 ating points	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease eriods in the I ving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72 eriods in rest 1000 mm	9 1 n + (1 1 4 con)	50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.98 /elling from Tal	(83)m 123 421 ble 9 A 0.7 7 in T 20. able 9	1 = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 , Th1 (°C) ug Sep 76 0.94 Table 9c) 97 97 20.85 9, Th2 (°C)		38.53 399.86 Nov 1 20.24	26.61 408.01 Dec 1		(83) (84) (85) (86)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean interverting Temperature Utilisation fac (86)m = 1 Mean internat (87)m = 20.01 Temperature (88)m = 20.16	57.41 internal and 447.55 4 rnal temper e during hea ctor for gain Feb 1 al temperati 20.09 e during hea 20.16	Additional control of the second seco	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease) eriods in the I iving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72 eriods in rest 20.18 20.18	9 1 n + (1 1 4 con) (ving) vving (folloc 2 2 2 2 0f dw 3	50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.98 velling from Tal 20.19 20.19	(83)m 123 421 ble 9 A 0.7 7 in T 20. able 9	1 = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 , Th1 (°C) ug Sep 76 0.94 Table 9c) 97 97 20.85 9, Th2 (°C)		38.53 399.86 Nov 1 20.24	26.61 408.01 Dec 1 19.99		(83) (84) (85) (86) (86) (87)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean intervertion factors Utilisation factors $(86)m = 1$ Mean intervertion $(87)m = 20.01$ Temperature $(88)m = 20.16$ Utilisation factors $(81)m = 20.16$	57.41 internal and 447.55 during hea ctor for gain Feb 1 al temperat 20.09 during hea 20.16	culated 87.27 d solar 462.43 rature (ating points for ling Mar 1 20.25 ating points 20.17 ns for r	for each mon 121 147.2 (84)m = (73)r (84)m = (73)r 472.99 475.0 472.99 475.0 (heating sease eriods in the l tving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.48 20.72 eriods in rest 20.18 20.18 20.11	9 1 n + (1 1 4 on) ving ving,m (s y (follc 2 2 2 of dw 3 2 2	50.92 143.56 83)m , watts 56.17 434.65 area from Tale area ee Table 9a) Jun Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.91 20.98 velling from Tale 20.19 ,m (see Table (see Table)	(83)m 123 421 ble 9 A 0.7 7 in T 20. able 9 20. 20.	I = Sum(74)m .74 99.11 I.6 409.59 I.6 409.59 , Th1 (°C) ug Sep 76 0.94 Table 9c) 97 20.85 9, Th2 (°C) 19 20.18	 6 <mark>5.88</mark> 400.2 0.99 20.55 20.18	38.53 399.86 Nov 1 20.24 20.17	26.61 408.01 Dec 1 19.99 20.17		(83) (84) (85) (86) (86) (87) (88)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean interverting Temperature Utilisation fac $(86)m = 1$ Mean internat $(87)m = 20.01$ Temperature $(88)m = 20.16$ Utilisation fac $(89)m = 1$	57.41 internal and 447.55 4 rnal temper e during heat ctor for gain Feb 1 al temperation 20.09 e during heat 20.16 ctor for gain 1	culated 87.27 d solar 462.43 rature (ating pe ns for li Mar 1 20.25 ating pe 20.17 ns for r 1	for each mon 121.46 147.2 $(84)m = (73)r$ (72.99) 475.0 472.99 475.0 (heating sease eriods in the l tving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72 eriods in rest 20.18 20.14 est of dwelling 0.99 0.95	9 1 n + (1 1 4 on) ving ving,m (s y (follc 2 2 2 of dw 3 3 2 g, h2 1	50.92 143.56 83)m , watts 56.17 434.65 area from Tale area ee Table 9a) Jun Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.19 20.19 ,m (see Table 0.6	(83)m 123 421 ble 9 A 0.7 7 in T 20. 20. 20. 20. 20. 20. 20.	I = Sum(74)m .74 99.11 I.6 409.59 I.7 20.9 I.8 0.9 I.9 20.18	 6 <mark>5.88</mark> 400.2 400.2 20.55 20.18 20.18	38.53 399.86 Nov 1 20.24	26.61 408.01 Dec 1 19.99		(83) (84) (85) (86) (86) (87)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean interverting Utilisation factor $(86)m = 1$ Mean internat $(87)m = 20.01$ Temperature $(88)m = 20.16$ Utilisation factor $(89)m = 1$ Mean internat	57.41 internal and 447.55 4 rnal temper e during hea ctor for gain Feb 1 al temperati 20.09 e during hea 20.16 internal temperation 1 al temperation 20.16 1 al temperation 1 al temperation 1 1 1 1 1 1 1	Advantage of the second	for each mon 121.46 147.2 (84)m = (73)r 472.99 475.0 (heating sease eriods in the I ving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72 eriods in rest 20.18 20.11 est of dwelling 0.99 0.95 he rest of dwelling 0.95	9 1 n + (1 1 4 on) (ving vving (folloc 2 2 (folloc 2 2 2 (folloc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 4 1 4 1 4 1 2 2 2 2 2 2 3 2 4 1 4 1 4 1 4 1 4 1 4 1 <td>50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.98 velling from Tal 20.19 20.19 ,m (see Table 0.82 0.6 172 (follow steps)</td> <td>(83)m 123 421 ble 9 A 0.7 7 in T 20. able 9 20. 9a) 0.6 eps 3</td> <td>1 = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 0.94 1.6 0.94 1.7 20.85 1.9 20.18 1.9 20.18 1.9 0.9 1.0 0.9 1.0 0.9</td> <td> 6<mark>5.88 400.2 400.2 0.99 20.55 20.18 0.99 e 9c)</mark></td> <td>38.53 399.86 Nov 1 20.24 20.17</td> <td>26.61 408.01 1 19.99 20.17</td> <td></td> <td>(83) (84) (85) (86) (87) (88) (88) (89)</td>	50.92 143.56 83)m , watts 56.17 434.65 area from Tal ee Table 9a) Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.98 velling from Tal 20.19 20.19 ,m (see Table 0.82 0.6 172 (follow steps)	(83)m 123 421 ble 9 A 0.7 7 in T 20. able 9 20. 9a) 0.6 eps 3	1 = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 0.94 1.6 0.94 1.7 20.85 1.9 20.18 1.9 20.18 1.9 0.9 1.0 0.9 1.0 0.9	 6 <mark>5.88 400.2 400.2 0.99 20.55 20.18 0.99 e 9c)</mark>	38.53 399.86 Nov 1 20.24 20.17	26.61 408.01 1 19.99 20.17		(83) (84) (85) (86) (87) (88) (88) (89)
(83)m = 31.61 Total gains – i $(84)m = 424.55$ 7. Mean interverting Temperature Utilisation fac $(86)m = 1$ Mean internat $(87)m = 20.01$ Temperature $(88)m = 20.16$ Utilisation fac $(89)m = 1$	57.41 internal and 447.55 4 rnal temper e during hea ctor for gain Feb 1 al temperati 20.09 e during hea 20.16 internal temperation 1 al temperation 20.16 1 al temperation 1 al temperation 1 1 1 1 1 1 1	culated 87.27 d solar 462.43 rature (ating pe ns for li Mar 1 20.25 ating pe 20.17 ns for r 1	for each mon 121.46 147.2 $(84)m = (73)r$ (72.99) 475.0 472.99 475.0 (heating sease eriods in the l tving area, h1 Apr Ma 0.99 0.97 iving area T1 20.48 20.72 eriods in rest 20.18 20.14 est of dwelling 0.99 0.95	9 1 n + (1 1 4 on) (ving vving (folloc 2 2 (folloc 2 2 2 (folloc 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 4 1 4 1 4 1 4 1 2 2 2 2 2 2 3 2 4 1 4 1 4 1 4 1 4 1 4 1 <td>50.92 143.56 83)m , watts 56.17 434.65 area from Tale area ee Table 9a) Jun Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.19 20.19 ,m (see Table 0.6</td> <td>(83)m 123 421 ble 9 A 0.7 7 in T 20. 20. 20. 20. 20. 20. 20.</td> <td>r = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 0, Th1 (°C) 10 Sep 76 0.94 76 0.94 76 0.94 70 20.85 97 20.85 97 20.18 35 0.9 9 to 7 in Table 17 20.04</td> <td> (82)m 65.88 400.2 400.2 20.55 20.55 20.18 0.99 e 9c) 19.62</td> <td>38.53 399.86 Nov 1 20.24 20.17</td> <td>26.61 408.01 1 19.99 20.17 1 18.8</td> <td></td> <td>(83) (84) (85) (86) (86) (87) (88)</td>	50.92 143.56 83)m , watts 56.17 434.65 area from Tale area ee Table 9a) Jun Jun Jul 0.88 0.72 ow steps 3 to 20.91 20.19 20.19 ,m (see Table 0.6	(83)m 123 421 ble 9 A 0.7 7 in T 20. 20. 20. 20. 20. 20. 20.	r = Sum(74)m .74 99.11 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 1.6 409.59 0, Th1 (°C) 10 Sep 76 0.94 76 0.94 76 0.94 70 20.85 97 20.85 97 20.18 35 0.9 9 to 7 in Table 17 20.04	 (82)m 65.88 400.2 400.2 20.55 20.55 20.18 0.99 e 9c) 19.62	38.53 399.86 Nov 1 20.24 20.17	26.61 408.01 1 19.99 20.17 1 18.8		(83) (84) (85) (86) (86) (87) (88)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

(92)m=	19.18	19.29	19.5	19.81	20.12	20.36	20.42	20.42	20.28	19.9	19.49	19.16		(92)
Apply	adjustr	nent to t	he mear	n internal	temper	ature fro	m Table	4e, whe	ere appro	opriate		•		
(93)m=	19.03	19.14	19.35	19.66	19.97	20.21	20.27	20.27	20.13	19.75	19.34	19.01		(93)
8. Sp	ace hea	ting requ	uirement	t										
				mperatui using Ta		ned at ste	ep 11 of	Table 9	b, so tha	t Ti,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa			ains, hm	· ·	may	oun	001	,	000			200		
(94)m=	1	1	0.99	0.99	0.95	0.82	0.62	0.66	0.9	0.99	1	1		(94)
Usefu	ul gains,	hmGm	, W = (94	4)m x (84	4)m									
(95)m=	423.88	446.42	460	465.92	450.56	374.52	267.43	278.3	368.55	394.34	398.6	407.51		(95)
Mont	nly aver	age exte	ernal tem	perature	from Ta	able 8						_		
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat	loss rate	e for mea	an intern	al tempe	erature,	Lm , W =	=[(39)m :	x [(93)m	– (96)m]				
(97)m=		1089.04	980.78	812.02	622.62	417.09	273.13	287.01	450.94	688.99	925.86	1125.05		(97)
	r	ř – –	r	r each n			h = 0.02	24 x [(97]	í Ì	<u> </u>	r –			
(98)m=	524.66	431.84	387.46	249.2	128.01	0	0	0	0	219.22	379.63	533.85		-
								Tota	l per year	(kWh/yea	r) = Sum(9	8)15,912 =	2853.88	(98)
Spac	e heatin	g require	ement in	kWh/m ²	/year								33.69	(99)
9a. En	ergy rec	uiremer	nts – Ind	ividual h	eating s	ystems i	ncluding	micro-C	CHP)					
Spac	e heatir	ng:												
Fract	ion of sp	bace h <mark>ea</mark>	at from s	econdar	y/supple	mentary	system						0	(201)
Fract	ion of sp	bace h <mark>e</mark> a	at from n	nain syst	em(s)			(202) = 1	- (201) =				1	(202)
Fract	ion of to	tal heati	ng from	main sys	stem 1			(204) = (2	02) × [1 –	(203)] =			1	(204)
Efficie	ency of I	main spa	ace heat	ing syste	em 1								89.9	(206)
Efficie	ency of	seconda	ry/suppl	ementar	y heatin	g system	n, %						0	(208)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/yea	_ ar
Spac	e heatin	g require	ement (c	alculate	d above)								
	524.66	431.84	387.46	249.2	128.01	0	0	0	0	219.22	379.63	533.85		
(211)m	n = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)									(211)
	583.6	480.36	430.99	277.19	142.4	0	0	0	0	243.85	422.28	593.83		
								Tota	l (kWh/yea	ar) =Sum(2	211) _{15,1012}	=	3174.51	(211)
Spac	e heatin	g fuel (s	econdar	y), kWh/	month									-
= {[(98)m x (20	01)] } x 1	00 ÷ (20	8)										
(215)m=	0	0	0	0	0	0	0	0	0	0	0	0		_
								Tota	II (kWh/yea	ar) =Sum(2	215) _{15,1012}	2=	0	(215)
	heating	-												
Output				ulated al		444.00	404.00	440.74	440.05	407.07	4 40 47	404.4		
F #isis	166.28	145.76	151.19	132.92	128.36	111.98	104.96	118.74	119.65	137.97	149.17	161.4		
		ater hea		88.76	00.07	007	007	007	007	00.04	00.07	00.44	86.7	(216)
(217)m=	89.11	89.07	88.98	I 88./6	88.27	86.7	86.7	86.7	86.7	88.64	88.97	89.14		(217)
Luci fo		[.]	1.1.0.11.1											
		•	kWh/mo) – (217)	onth										
	(64) = ו	•	kWh/mo) ÷ (217) 169.92	onth	145.42	129.16	121.07	136.96	138.01	155.65	167.66	181.07		

Annual totals		kWh/yea	r _	kWh/year	_
Space heating fuel used, main system 1				3174.51	
Water heating fuel used			[1844.9]
Electricity for pumps, fans and electric keep-hot			_		_
mechanical ventilation - balanced, extract or posit	ive input from out	side	191.68		(230a)
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year	:	sum of (230a)(230g) =	[266.68	(231)
Electricity for lighting			[472.85	(232)
12a. CO2 emissions – Individual heating systems	including micro-C	HP			
	Energy kWh/year	Emission fac kg CO2/kWh	tor	Emissions kg CO2/yea	r
Space heating (main system 1)	(211) x	0.216	= [685.69	(261)
Space heating (secondary)	(215) x	0.519	= [0	(263)
Water heating	(219) x	0.216	=	398.5	(264)

(261) + (262) + (263) + (264) =

0.519

0.519

sum of (265)...(271) =

 $(272) \div (4) =$

=

(231) x

(232) x

Space and water heating

Dwelling CO2 Emission Rate

Electricity for lighting

Total CO2, kg/year

El rating (section 14)

Electricity for pumps, fans and electric keep-hot

1084.19

138.41

2<mark>45.41</mark>

1468.01

17.33

85

(265)

(267)

(268)

(272)

(273)

(274)

			User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 201		;	Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
Addross I	1 Bed Flat, 219-223			Address:		nh lunct	ion I ON			
Address : 1. Overall dwelling dimer		Columand		ie, Loug	προιοαί	JII JUIICI	ION, LON			
Ground floor			Area	· ,	(1a) x	Av. He	ight(m) 2.5	(2a) =	Volume(m³) 124.5) (3a)
Total floor area TFA = (1a	i)+(1b)+(1c)+(1d)+(1e	e)+(1n)	4	9.8	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	124.5	(5)
2. Ventilation rate:										
Number of chimneys	heating h	econdary leating	(+	other	1 = [total	x 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0	+	0] [] = [0		20 =	0	(6b)
Number of intermittent far	וב ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום א ואני גער ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום אוניים ביום או					0	x 1	10 =	0	(7a)
Number of passive vents						0	x 1	10 =	0	(7b)
Number of flueless gas fir	es					0	x 4	40 =	0	(7c)
								Air ch	ange <mark>s per</mark> ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
Number of storeys in th Additional infiltration	e dwelling (ns)							•1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	esent, use the value corres				•	UCTION			0	(11)
If suspended wooden fl		ed) or 0.1	(seale	d), else	enter 0				0	(12)
If no draught lobby, ente									0	(13)
Percentage of windows	and doors draught st	ripped			v (1.4) · 1	001 -		·	0	(14)
Window infiltration				0.25 - [0.2 (8) + (10) -			⊾ (15) –		0	(15)
Air permeability value, o	n50 expressed in cub	nic metres						area	0	(16) (17)
If based on air permeabilit			•	•	•		invelope	uluu	2 0.1	(18)
Air permeability value applies	•					is being us	sed	I	0.1	
Number of sides sheltered	t								3	(19)
Shelter factor				(20) = 1 - [9)] =			0.78	(20)
Infiltration rate incorporati	-		((21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified for		i i	<u> </u>		-	•				
	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	- I I I		<u> </u>	<u> </u>	,	4.0	4.5	47		
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	, 		,				I			
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m		_			
	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(220)
				endix N, (2	3b) = (23a	a) x Fmv (e	equation (N5)) . other	wise (23b) = (23a)			0.5	(23a) (23b)
				iency in %) (200)			0.5	
			-	-	-					2b)m i (22h) v [1 – (23c)	73.1	(23c)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21 (24a	0.21	0.22	230) × [0.22	0.23	- 100j	(24a)
												0.20	l	(,)
D) II (24b)m=				entilation				0 (240	0 m = (22)	$\frac{2}{0}$ m + (1)	230)	0	1	(24b)
		-		•	-	-	-	-	Ţ	0	0	0		(240)
,				ntilation c hen (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous									1	
i	if (22b)m	n = 1, the	en (24d)	m = (22k	o)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at losses	s and he	eat loss i	oaramete	er:									_
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	AXU		k-value	e	AXk
		area		'n		A ,n	n²	W/m2	K	(VV/	K)	kJ/m²·l	ĸ	kJ/K
Windo	ws Type	1				10.8	x1/	[1/(0.73)+	- 0.04] =	7.66				(27)
Windo	<mark>ws</mark> Type	2				2.475	; x1/	[1/(0.73)+	- 0.04] =	1.76				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.8		8.7	x	0.15] = [1.31				(29)
Walls ⁻	Гуре2	3.5		2.47		1.03	×	0.15	 =	0.15	F i		i i	(29)
Total a	rea of el	lements	, m²			23								(31)
Party v	vall					51.75	j x	0		0				(32)
Party f	_					49.8	\exists		เ		L		\dashv	(32a)
Party c	eiling					49.8					ĺ		\exists	(32b)
Interna	al wall **					45.6					[$\exists \vdash$	(32c)
							ated using	ı formula 1,	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	3.2	
	heat los			nternal wall	s and pan	litions		(26)(30)	+ (32) =				40.07	(22)
	apacity (0)				(20)(00)		(30) + (32	2) + (225)	(220) -	10.87	
			. ,	- Cm ·		k l/m2k				tive Value	· · · ·	(326) =	13269.5	
		-		P = Cm ÷	,			racisaly the				abla 1f	250	(35)
	used instea				constructi	ion ale not	KIIOWII PI	ecisely life	inucative	values of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						5.22	(36)
			are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric hea	at loss							(33) +	(36) =			16.09	(37)
Ventila	tion hea	t loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	9.59	9.51	9.43	9.03	8.95	8.55	8.55	8.47	8.71	8.95	9.11	9.27		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	25.68	25.6	25.52	25.12	25.04	24.64	24.64	24.56	24.8	25.04	25.2	25.36		
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		1	Average =	Sum(39)1	12 /12=	25.1p	age 2 of 39)

Heat lo	ss para	ımeter (H	HLP), W	/m²K					(40)m	= (39)m ÷	- (4)			
(40)m=	0.52	0.51	0.51	0.5	0.5	0.49	0.49	0.49	0.5	0.5	0.51	0.51		
						!		1	,	Average =	Sum(40)1.	.12 /12=	0.5	(40)
Numbe	-	/s in mo	<u> </u>	r í		<u> </u>	I	<u> </u>				_		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	ting ene	rgy requ	irement:								kWh/ye	ear:	
if TF.	A > 13.9	upancy, 9, N = 1 9, N = 1		(1 - exp	(-0.0003	349 x (TF	FA -13.9)2)] + 0.(0013 x (⁻	TFA -13		68		(42)
Reduce	the annua	al average	hot water	usage by	5% if the c		designed	(25 x N) to achieve		se target o		1.2		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage i	n litres per	r day for e		,	ctor from	Table 1c x	-						
(44)m=	81.62	78.65	75.68	72.72	69.75	66.78	66.78	69.75	72.72	75.68	78.65	81.62		
				I		I		Į	-	l Total = Su	m(44) ₁₁₂ =		890.4	(44)
Ener <mark>gy</mark> c	content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	m x nm x L	OTm / 3600) kWh/mor	oth (<mark>see T</mark> a	ables 1b, 1	c, 1d)		
(45)m=	1 <mark>2</mark> 1.04	105.86	109.24	95. <mark>2</mark> 4	91.38	78.86	73.07	83.85	84.85	98.89	107.94	117.22		
If instant	aneous w	vətor hoati	ng at poin	t of use (no	hot water	r storage)	enter () in	boxes (46		Total = Su	m(45) ₁₁₂ =	:	1167.46	(45)
														(10)
(46)m= Water s	18.16	15.88	16.39	14.29	13.71	11.83	10.96	12.58	12.73	14.83	16.19	17.58		(46)
	-		includir	ng any se	olar or M	WHRS	storage	within sa	ame ves	sel)		(47)
				-		enter 110					· · · · ·	5		()
	•	-			-			ombi boil	ers) ente	er '0' in (47)			
Water s	storage	loss:		,						·	,			
a) If m	anufact	urer's d	eclared I	oss facto	or is kno	wn (kWł	n/day):				(0		(48)
Tempe	rature f	actor fro	m Table	2b							(C		(49)
Energy	lost fro	m watei	· storage	e, kWh/ye	ear			(48) x (49)) =		()		(50)
				•		or is not								
		-			le 2 (kW	h/litre/da	ay)				(0		(51)
	-	eating s from Ta		011 4.3								2	l	(52)
		actor fro		2b))		(52)
				e, kWh/ye	aar			(47) x (51)) x (52) x (⁴	53) -				(54)
•••		(54) in (5	-	, KVVII/y	501			(47) X (01))	00) -))		(54)
	. ,	. , .	,	for each	month			((56)m = (55) × (41)ı	m	`	5		()
(56)m=	0	0	0	0	0	0	0	0	0	0	0	0		(56)
	r contains	s dedicate	d solar sto	prage, (57)	-			-	7)m = (56)	-	H11) is fro	-	ix H	
(57)m=	0	0	0	0	0	0	0	0	0	0	0	0		(57)
Priman		loss (ar	nual) fr	, om Table	<u>.</u> 3	-	•	•	•)		(58)
-						(59)m = ((58) ÷ 36	65 × (41)	m		Ľ`	-	I	
-						. ,	. ,	ng and a		r thermo	stat)			
(59)m=	0	0	0	0	0	0	0	0	0	0	0	0		(59)
L													I	

Combi	loss ca	alculated	for eac	h month	(61)m =	(60)) ÷ 36	65 × (41))m						
(61)m=	11.76	10.62	11.74	11.35	11.71	1	1.32	11.69	11.7	11.33	11.73	11.37	11.76]	(61)
Total h	neat rec	uired for	water h	neating	calculated	d fo	r eacl	n month	(62)m =	0.85 ×	(45)m ·	+ (46)m +	(57)m +	- · (59)m + (61)m	
(62)m=	132.8	116.48	120.98	106.58	103.1	9	0.18	84.76	95.56	96.19	110.62	2 119.31	128.98		(62)
Solar D	-IW input	calculated	using Ap	pendix G	or Appendix	κΗ ((negati	ve quantity	/) (enter '0	' if no sola	ar contrib	ution to wate	er heating)		
(add a	ddition	al lines if	FGHR	S and/or	WWHRS	S ap	plies	, see Ap	pendix (G)				_	
(63)m=	0	0	0	0	0		0	0	0	0	0	0	0		(63)
Outpu	t from v	vater hea	ter						-	-			_	_	
(64)m=	132.8	116.48	120.98	106.58	103.1	9	0.18	84.76	95.56	96.19	110.62	2 119.31	128.98		_
									Outp	out from w	ater hea	ter (annual)	112	1305.54	(64)
Heat g	ains fro	om water	heating	g, kWh/r	nonth 0.2	5 ′	[0.85	× (45)m	+ (61)m	n] + 0.8 x	x [(46)r	n + (57)m	+ (59)m	[]	
(65)m=	43.19	37.85	39.26	34.5	33.31	2	9.05	27.22	30.81	31.05	35.81	38.73	41.92		(65)
inclu	ıde (57)m in calo	culation	of (65)r	n only if c	cylir	nder i	s in the c	dwelling	or hot w	ater is	from com	munity h	neating	
5. In	ternal g	ains (see	e Table	5 and 5	a):										
Metab	olic gai	ns (Table	e 5), Wa	atts											
	Jan	Feb	Mar	Apr	May		Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	84.21	84.21	84.21	84.21	84.21	8	84.21	84.21	84.21	84.21	8 <mark>4.21</mark>	84.21	84.21		(66)
Lightir	g gains	s (calcula	ted in A	ppendix	. L, equat	tion	L9 o	r L9a), a	lso see	Table 5					
(67)m=	17.77	15.79	12.84	9.72	7.27	(5.13	6.63	8.62	11.56	14.68	17.14	18.27		(67)
Applia	nces ga	ains (ca <mark>lc</mark>	ulated i	n Appei	ndix L, eq	uat	tion L	13 o <mark>r L1</mark> :	3a), also	see Ta	ble 5				
(68)m=	146.71	148.24	144.4	136.23	125.92	1	16.23	109.76	108.24	112.07	120.24	4 130.55	140.24		(68)
Cookir	ng gain	s (calcula	ated in A	Appendi	x L, equa	tior	n L15	or L15a)), also se	ee Table	e 5				
(69)m=	31.42	31.42	31.42	31.42	31.42	3	1.42	31.42	31.42	31.42	31.42	31.42	31.42	1	(69)
Pumps	s and fa	ans gains	(Table	5a)											
(70)m=	3	3	3	3	3		3	3	3	3	3	3	3]	(70)
Losse	s e.g. e	vaporatio	n (nega	ative val	ues) (Tab	ble	5)			•	•	•			
(71)m=	-67.37	-67.37	-67.37	-67.37	-67.37	-6	67.37	-67.37	-67.37	-67.37	-67.37	-67.37	-67.37]	(71)
Water	heating	, g gains (1	Table 5)		•						•	•	<u>.</u>		
(72)m=	58.05	56.33	52.77	47.92	44.78	4	0.35	36.58	41.41	43.12	48.14	53.8	56.34]	(72)
Total	interna	l gains =	:		-		(66)	m + (67)m	n + (68)m -	+ (69)m +	(70)m +	(71)m + (72))m	1	
(73)m=	273.8	271.62	261.27	245.14	229.23	2	13.98	204.24	209.52	218.02	234.3	2 252.75	266.11]	(73)
6. So	lar gair	is:	<u>.</u>									•	<u>.</u>		
Solar (gains are	calculated	using sol	ar flux fro	n Table 6a	and	associ	ated equa	tions to co	onvert to th	ne applic	able orienta	tion.		
Orient		Access F		Are			Flu		_	g_		FF		Gains	
		Table 6d		m²			Tat	ole 6a	Τ	able 6b		Table 6c		(W)	
Southe	ast <mark>0.9x</mark>	0.77)	(2	.47	x	3	6.79	x	0.63	x	0.1	=	3.98	(77)
	ast <mark>0.9x</mark>	0.77)	< _ 2	.47	x	6	2.67	x	0.63	x	0.1	=	6.77	(77)
Southe	ast <mark>0.9x</mark>	0.77)	< 2	.47	x	8	5.75	x	0.63	x	0.1	=	9.27	(77)
	ast <mark>0.9x</mark>	0.77)	(2	.47	x	1	06.25	x	0.63	x	0.1	=	11.48	(77)
Southe	ast <mark>0.9x</mark>	0.77)	(2	.47	x	1	19.01	x	0.63	x	0.1	=	12.86	(77)

Southeast 0	.9x 0.77	x	2.47	3	۲ 1	18.15	x	0.63	x	0.1	=	= 12.77	(77)
Southeast 0	. <mark>9x</mark> 0.77	x	2.47	;	(1	13.91	x	0.63	×	0.1	-	= 12.31	(77)
Southeast 0	.9x 0.77	x	2.47	;	۲ (04.39	x	0.63	x	0.1	-	= 11.28	(77)
Southeast 0	.9x 0.77	x	2.47	;	<u>د</u> ا	92.85	x	0.63	x	0.1	-	= 10.03	(77)
Southeast 0	.9x 0.77	x	2.47	3	(69.27	x	0.63	x	0.1	=	= 7.48	(77)
Southeast 0	.9x 0.77	x	2.47	3	(,	44.07	x	0.63	×	0.1		= 4.76	(77)
Southeast 0	.9x 0.77	x	2.47	3	(;	31.49	x	0.63	×	0.1		= 3.4	(77)
Southwest ₀	.9x 0.77	x	10.8	;	(;	36.79	1	0.63	_ × [0.1	-	= 17.35	(79)
Southwest ₀	.9x 0.77	x	10.8	;	((62.67	1	0.63	_ × [0.1	-	= 29.55	(79)
Southwest ₀	.9x 0.77	x	10.8		(;	85.75	1	0.63		0.1	<u> </u>	= 40.43	(79)
Southwest ₀	.9x 0.77	x	10.8	;	· [1	06.25	1	0.63		0.1		= 50.1	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(1	19.01	i i	0.63		0.1	-	= 56.12	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(1	18.15	i i	0.63		0.1	-	= 55.71	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(<u> </u>	13.91	1	0.63		0.1	-	= 53.71	(79)
Southwest ₀	.9x 0.77	x	10.8	;	(1	04.39		0.63		0.1	-	= 49.22	(79)
Southwest ₀	.9x 0.77	x	10.8	;	<u>با</u>	92.85	1	0.63		0.1	-	= 43.78	(79)
Southwest ₀	.9x 0.77	x	10.8	;	((69.27	1	0.63		0.1	=	= 32.66	(79)
Sout <mark>hwest</mark> 0	.9x 0.77	x	10.8			44.07		0.63	х	0.1	-	= 20.78	(79)
Sout <mark>hwest</mark> 0	.9x 0.77	×	10.8	Ξ,		31.49	1	0.63	X	0.1	=	= 14.85	(79)
									L				
Solar gain	s in watts, cal	culated	for each r	nonth			(83)m	= Sum(74)m .	(82)m				
	.32 36.32	49.7		68.98	68.48	66.02	60.		40.15	25.54	18.25	5	(83)
Total gains	s – internal an	d solar	(84)m = (7	73)m +	(83)m	, watts	<u> </u>				I	_	
(84)m= 295	5.12 307.94	310.97	306.72 2	298.2	282.45	270.25	270	.02 271.84	274.47	278.29	284.3	6	(84)
7 Mean i	nternal tempe	erature	(heating se	eason)							•	_	
	ure during he			, i i i i i i i i i i i i i i i i i i i	a area	from Tab	ole 9.	Th1 (°C)				21	(85)
	factor for gai	• •			-		,	(-)					`
	an Feb	Mar	Apr	May	Jun	Jul	A	ug Sep	Oct	Nov	Dec	2	
	99 0.99	0.97		0.77	0.56	0.4	0.4	• ·	0.88	0.98	0.99		(86)
Mean inte	ernal temperat	ture in l	iving area	I	low etc	$\frac{1}{2}$	I 7 in T				I		
(87)m= 20	i	20.85		20.99	21	21	2		20.96	20.83	20.69)	(87)
						I			20.00				
Iamnoro					NACHING			1 1 1 2 1 2 1 2 1 2					
·	ure during he					í	1		20 52	20.52	20.51		(88)
· · · · · · · · · · · · · · · · · · ·	51 20.51	ating p 20.51		20.52	20.53	20.53	20.		20.52	20.52	20.51		(88)
(88)m= 20 Utilisation	.51 20.51	20.51	20.52 2 est of dwe	20.52 Illing, h	20.53 2,m (s	20.53	20.	53 20.52	20.52	_I	I		
(88)m= 20 Utilisation	.51 20.51	20.51	20.52 2 est of dwe	20.52	20.53	20.53	20.	53 20.52	20.52 0.86	0.97	20.51 0.99		(88) (89)
(88)m= 20 Utilisation (89)m= 0.	.51 20.51	20.51 ins for r 0.96	20.52 2 est of dwe 0.89	20.52 Illing, h 0.73	20.53 2,m (so 0.52	20.53 ee Table 0.36	20.9 9a) 0.3	53 20.52 8 0.58	0.86	_I	I		
(88)m= 20 Utilisation (89)m= 0. Mean inte	51 20.51 1 factor for gai	20.51 ins for r 0.96	20.52 2 est of dwe 0.89 he rest of	20.52 Illing, h 0.73	20.53 2,m (so 0.52	20.53 ee Table 0.36	20.9 9a) 0.3	53 20.52 8 0.58 to 7 in Tabl	0.86	_I	I		
(88)m= 20 Utilisation (89)m= 0. Mean inte	51 20.51 6 factor for gai 99 0.98 ernal temperat	20.51 ins for r 0.96 ture in t	20.52 2 est of dwe 0.89 he rest of	20.52 Iling, h 0.73 dwellir	20.53 2,m (so 0.52 ng T2 (f	20.53 ee Table 0.36 follow ste	20.9 9a) 0.3	3 20.52 8 0.58 to 7 in Tabl 53 20.52	0.86 e 9c) 20.48	0.97	0.99	0.47	(89)
(88)m= 20 Utilisation (89)m= 0. Mean inte (90)m= 20	51 20.51 a factor for gai 99 0.98 ernal temperation 12 20.2	20.51 ins for r 0.96 ture in t 20.32	20.52 2 est of dwe 0.89	20.52 Illing, h 0.73 dwellir 20.51	20.53 2,m (so 0.52 ng T2 (f 20.53	20.53 ee Table 0.36 follow ste 20.53	20.9 9a) 0.3 20.9	8 0.58 to 7 in Tabl 53 20.52	0.86 e 9c) 20.48	0.97	0.99	 	(89)
(88)m= 20 Utilisation (89)m= 0. Mean inte (90)m= 20 Mean inte	51 20.51 6 factor for gai 99 0.98 ernal temperat	20.51 ins for r 0.96 ture in t 20.32	20.52 2 est of dwe 0.89 4 he rest of 20.45 2 r the whole	20.52 Illing, h 0.73 dwellir 20.51	20.53 2,m (so 0.52 ng T2 (f 20.53	20.53 ee Table 0.36 follow ste 20.53	20.9 9a) 0.3 20.9	 20.52 20.52 8 0.58 to 7 in Tabl 53 20.52 f fLA) × T2 	0.86 e 9c) 20.48	0.97	0.99	0.47	(89)

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

(93)m= 20.2		20.42	20.53	20.58	20.6	20.6	20.6	20.6	20.56	20.4	20.23		(93)
	neating req												
	ne mean int ion factor fo		•		ied at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
Ja		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	factor for g			may	••••	• •		000	•••		200		
(94)m= 0.9		0.96	0.89	0.74	0.52	0.36	0.38	0.59	0.86	0.97	0.99		(94)
Useful gai	ns, hmGm	, W = (94	4)m x (84	4)m									
(95)m= 291.	89 301.9	297.73	272.04	219.52	147.69	98.5	103.12	160.78	236.3	270.11	281.99		(95)
Monthly av	verage exte	ernal tem	perature	from Ta	able 8								
(96)m= 4.3		6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	rate for me	1	· · ·		i	- ,			-			I	
(97)m= 409.		355.23	292.22	222.47	147.78	98.51	103.12	161.08	249.27	335.19	406.46		(97)
	ating require	1							<u> </u>	<i>.</i>	00.0	l	
(98)m= 87.4	45 62.34	42.78	14.54	2.19	0	0	0	0	9.65	46.85	92.6	050.4	
							lota	l per year	(kWh/year) = Sum(9	8)15,912 =	358.4	(98)
Space hea	ating require	ement in	kWh/m ²	/year								7.2	(99)
9a. Energy	requiremer	nts – Indi	vidual h	eating s	ystems i	ncluding	micro-C	HP)					
Space he	-												
	f space hea				mentary	system						0	(201)
Fraction of	f space hea	at from m	nain syst	em(s)			(202) = 1 -	- (201) =				1	(202)
Fraction of	f total hea <mark>ti</mark>	ng from	main sys	stem 1			(204) = (20	02) × [1 – ((203)] =			1	(204)
Eff <mark>icienc</mark> y	of main s <mark>p</mark> a	ace heat	ing syste	em 1								89.9	(206)
Eff <mark>icienc</mark> y	of seconda	ry/suppl	ementar <u>;</u>	y heating	g system	n, %						0	(208)
Ja	n Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	kWh/ye	ear
Space hea	ating require	ement (c	alculate	d above))								
87.4	45 62.34	42.78	14.54	2.19	0	0	0	0	9.65	46.85	92.6		
(211)m = {[(98)m x (20	04)] } x 1	00 ÷ (20)6)								-	(211)
97.2	69.34	47.59	16.17	2.44	0	0	0	0	10.73	52.12	103		
		•					Tota	l (kWh/yea	ar) =Sum(2	2 11) _{15,1012}	.=	398.67	(211)
Space hea	ating fuel (s	econdar	y), kWh/	month									
= {[(98)m x	(201)] } x 1	00 ÷ (20	8)		r								
<mark>(215)m=</mark> 0	0	0	0	0	0	0	0	0	0	0	0		_
							Tota	l (kWh/yea	ar) =Sum(2	215) _{15,1012}	<u>_</u>	0	(215)
Water heat	-												
Output from					00.40	0470	05.50	00.40	440.00	440.04	400.00	l	
		120.98	106.58	103.1	90.18	84.76	95.56	96.19	110.62	119.31	128.98		
Efficiency o		r	07.07	00.70	007	00.7	0.07	00.7	00.05	07.50	00.04	86.7	(216)
(217)m= 87.9		87.51	87.07	86.76	86.7	86.7	86.7	86.7	86.95	87.58	88.01		(217)
Fuel for wa (219)m = (•												
(219)m = 151.		138.24	122.41	118.82	104.01	97.76	110.21	110.94	127.22	136.24	146.55		
L													
		-					Tota	I = Sum(21	19a) ₁₁₂ =			1496.11	(219)
Annual tot	als	•					Tota	I = Sum(2'		Nh/year		1496.11 kWh/yea	
Annual tot Space heat		ed, main	system	1			Tota	I = Sum(2′		Wh/year			

Water heating fuel used				1496.11]
Electricity for pumps, fans and electric keep-hot					
mechanical ventilation - balanced, extract or posit	ive input from ou	utside	116.96		(230a)
central heating pump:			30		(230c)
boiler with a fan-assisted flue			45		(230e)
Total electricity for the above, kWh/year		sum of (230a)(230g) =		191.96	(231)
Electricity for lighting				313.91	(232)
12a. CO2 emissions – Individual heating systems	including micro-	СНР			
	Energy kWh/year	Emission fac kg CO2/kWh	ctor	Emissions kg CO2/yea	ır
Space heating (main system 1)	(211) x	0.216	=	86.11	(261)
Space heating (secondary)	(215) x	0.519	=	0	(263)
Water heating	(219) x	0.216	=	323.16	(264)
Space and water heating	(261) + (262) + (26	63) + (264) =		409.27	(265)
Electricity for pumps, fans and electric keep-hot	(231) x	0.519	=	99.62	(267)
Electricity for lighting	(232) x	0.519	=	162.92	(268)
Total CO2, kg/year		sum of (265)(271) =		6 <mark>71.81</mark>	(272)
Dwelling CO2 Emission Rate		(272) ÷ (4) =		13.49	(273)
El rating (section 14)				91	(274)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201	Versio	n: 1.0.4.23							
Addross I	1 Bed Flat, 219-223			Address:		nh lunct	ion I ON			
Address : 1. Overall dwelling dimen		Columan		ne, Loug	μηροιοαί	JII JUIICI	ION, LON			
Ground floor			Area 5		(1a) x	Av. He	ight(m) 2.5	(2a) =	Volume(m ³) 129.25	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)) 5	51.7	(4)					
Dwelling volume	129.25	(5)								
2. Ventilation rate:										
Number of chimneys Number of open flues		econdary neating 0 0	/ · · ·	0 0] = [] = [total 0 0		40 = 20 =	m ³ per hour	(6a) (6b)
Number of intermittent fan		0		0		-		10 =		
	5				Ļ	0		l	0	(7a)
Number of passive vents					L	0	X 1	10 =	0	(7b)
Number of flueless gas fire						0	x 4	⁴⁰ = Air ch	0 anges per ho	(7c) ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
<i>If a pressurisation test has be</i> Number of storeys in the Additional infiltration Structural infiltration: 0.2	e dw <mark>elling</mark> (ns) 25 for steel or timber	frame or	0.35 for	masonr	y constr			•1]x0.1 =	0 0 0	(9) (10) (11)
if both types of wall are pre deducting areas of opening	gs); if equal user 0.35		-							_
If suspended wooden flo	,	led) or 0.'	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente									0	(13)
Percentage of windows	and doors draught st	tripped		0.25 - [0.2	v (14) ± 1	001 -			0	(14)
Window infiltration				(8) + (10) -		-	+ (15) -		0	(15)
Air permeability value, c	150 expressed in cut	nic metres						area	0	(16) (17)
If based on air permeabilit			•	•	•		invelope	uluu	2 0.1	(17)
Air permeability value applies	•					is being u	sed	l	0.1	
Number of sides sheltered	I								2	(19)
Shelter factor				(20) = 1 - [9)] =			0.85	(20)
Infiltration rate incorporation	-			(21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo		<u> </u>								
Jan Feb N	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe		, , , , , , , , , , , , , , , , , , ,						<u> </u>		
(22)m= 5.1 5 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor $(22a)m = (22)$, ,					1	·		
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allowi	ng for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m				_	
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
	late effe echanica		-	rate for t	the appli	cable ca	se						0.5	(23a)
				endix N. (2	23b) = (23a) x Fmv (e	equation (N	N5)), othe	rwise (23b) = (23a)			0.5	(23a)
					allowing f					, (,			0.5	(230) (23c)
			-	-	with hea					2h)m + (23h) v ['	1 – (23c)	73.1 ÷ 1001	(230)
(24a)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23]	(24a)
					without								1	
(24b)m=				0					0		0	0	1	(24b)
			tract ver	L	or positiv		/entilatio	n from c	utside				l	
					c) = (23b	-				.5 × (23b))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from l	oft				1	
	if (22b)n	n = 1, th	en (24d)	m = (22	b)m othe	rwise (2	4d)m = (0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
	r	<u> </u>		· · · · · · · · · · · · · · · · · · ·) or (24b	, ,	, ,	· · · · · · · · · · · · · · · · · · ·	<u> </u>		1	1	1	
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	oaramet	er:									
	NENT	Gros		Openir	-	Net Ar		U-valu		AXU		k-value		AXk
\A/' - 1-	. .	area	(m²)	n	1 ²	A ,r		W/m2		(W/I	K)	kJ/m²·l	K	kJ/K
	ws Type					10.35		[1/(0.73)-	Ļ	7.34				(27)
	ws Type	e 2				4.51		[1/(0.73)+	+ 0.04] =	3.2	닐 .			(27)
Floor						51.7	×	0.06	=	3.102				(28)
Walls	Type1	19.7	75	10.3	5	9.4	X	0.15	= [1.41				(29)
Walls	Type2	14.7	75	4.51		10.24	x	0.15	=	1.54				(29)
Walls	Туре3	20)	0		20	x	0.15	=	3				(29)
Total a	area of e	elements	, m²			106.2	2							(31)
Party	wall					20	x	0	=	0				(32)
Party	ceiling					51.7								(32b)
Interna	al wall **					77								(32c)
					indow U-va Ils and part		ated using	formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	n 3.2	
Fabric	heat los	ss, W/K :	= S (A x	U)				(26)(30)	+ (32) =				19.59	(33)
Heat c	apacity	Cm = S((A x k)						((28)	(30) + (32	2) + (32a).	(32e) =	11299.9	9 (34)
Therm	al mass	parame	eter (TMF	P = Cm -	÷ TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-		ere the de tailed calc		e constructi	ion are not	t known pr	ecisely the	e indicative	e values of	TMP in Ta	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated	using Ap	pendix ł	<						7.96	(36)
	s of therma abric he		are not kn	own (36) :	= 0.05 x (3	1)			(33) ±	(36) =			07 55	(27)
			alculated	month	v						25)m x (5)		27.55	(37)
v Gritik	Jan	Feb	Mar	Apr	y May	Jun	Jul	Aug	Sep	Oct	Nov	Dec]	
	Jun				Interv	Jun		, lug					I	

(38)m=	10.36	10.27	10.18	9.72	9.63	9.18	9.18	9.09	9.36	9.63	9.82	10		(38)
Heat tr	ansfer o	coefficier	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	37.91	37.82	37.73	37.27	37.18	36.73	36.73	36.64	36.91	37.18	37.36	37.54		
Heat lo	oss para	imeter (H	HLP), W	/m²K						Average = = (39)m ÷		12 /12=	37.25	(39)
(40)m=	0.73	0.73	0.73	0.72	0.72	0.71	0.71	0.71	0.71	0.72	0.72	0.73		
Numbe	er of day	/s in moi	nth (Tab	le 1a)						Average =	Sum(40)1.	12 /12=	0.72	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	iter heat	ting enei	rgy requ	irement:								kWh/ye	ear:	
if TF				: [1 - exp	(-0.0003	949 x (TF	FA -13.9)2)] + 0.()013 x (TFA -13.		74		(42)
			ater usag	ge in litre	es per da	iy Vd,av	erage =	(25 x N)	+ 36		75	.53		(43)
		-		usage by a r day (all w		-	-	to achieve	a water us	se target o				
not more							, 							
Hot wate	Jan er usage i	Feb	Mar day for ea	Apr ach month	May	Jun	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
	83.08	80.06	77.04	74.02	71	67.98	67.98	71	74.02	77.04	80.06	83.08		
(44)m=	03.00	00.00	77.04	74.02		07.90	07.90			Total = Su			906.36	(44)
Energy o	content of	hot water	used - cal	lculated mo	onthly $= 4$.	190 x Vd,r	n x nm x D)))))))))))))))))))					000.00	(,
(45)m=	123.21	107.76	111.2	96.95	93.02	80.27	74.38	85.36	86.37	10 <mark>0.66</mark>	109.88	119.32		
										Total = Su	m(45) ₁₁₂ =	-	1188.38	(45)
lf instant	aneous w	ater heatii	ng at point	t of use (no	o hot water	storage),	enter 0 in	boxes (46) to (61)	i	r			
(46)m=	18.48 storage	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
	-		includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		180		(47)
-		. ,		ank in dw			-					100		()
Otherw	ise if no	o stored		er (this ir	-			• •	ers) ente	er '0' in (47)			
	storage		eclared I	oss facto	or is kno	wn (kWł	n/dav).					0		(48)
			m Table				"aay).					0		(40)
				e, kWh/ye	ear			(48) x (49) =			80		(10)
•••			-	cylinder l		or is not								(00)
		-		rom Tabl	le 2 (kW	h/litre/da	ıy)				0.	01		(51)
	-	leating s from Ta	ee secti	on 4.3										(50)
			m Table	2b								87 .6		(52) (53)
				, kWh/ye	ear			(47) x (51)) x (52) x (53) =		97		(54)
		(54) in (5	-	,,,,					(-) (97		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)
	er contains		d solar sto	nage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Appendi	ix H	
(57)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)

Primary circui	•				(FO) m	(50) . 20	SE (44)				0		(58)
Primary circui (modified b					· ·	. ,	• • •		r thermo	stat)			
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss ca	alculated	for each	month	(61)m =	(60) ÷ 3	65 x (41)m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	• 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61	1)m
(62)m= 176.56	155.95	164.55	148.58	146.38	131.9	127.74	138.71	138.01	154.01	161.51	172.68		(62)
Solar DHW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)		-	-		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	vater hea	ater											
(64)m= 176.56	155.95	164.55	148.58	146.38	131.9	127.74	138.71	138.01	154.01	161.51	172.68		
							Out	out from wa	ater heate	r (annual)₁	12	1816.58	(64)
Heat gains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)n	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 83.65	74.38	79.66	73.54	73.61	68	67.42	71.06	70.03	76.15	77.84	82.36		(65)
include (57)	m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	e Table {	5 and 5a):									
Met <mark>abolic</mark> gai	ns (Table	e 5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	8 <mark>7.01</mark>	87.01	87.01		(66)
Ligh <mark>ting g</mark> ains	(calcula	ited in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 18.24	16.2	13.18	9.98	7.46	6.3	6.8	8.84	11.87	15.07	17.59	18.75		(67)
Appliances ga	ains (calc	culated in	n Appeno	dix L, eq	uation L	13 or L1	3a), also	o see Ta	ble 5				
(68)m= 151.65	153.22	149.26	140.81	130.16	120.14	113.45	111.88	115.84	124.28	134.94	144.96		(68)
Cooking gains	s (calcula	ated in A	ppendix	L, equa	tion L15	or L15a), also se	ee Table	5				
(69)m= 31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7		(69)
Pumps and fa	ins gains	(Table	5a)	-	-	-	-	-	-				
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g. e	vaporatio	on (nega	tive valu	es) (Tab	ole 5)	-							
(71)m= -69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61		(71)
Water heating	, gains (1	Fable 5)	•	•	•		•	•	•				
(72)m= 112.43	110.69	107.07	102.14	98.94	94.44	90.61	95.52	97.26	102.36	108.11	110.7		(72)
Total interna	I gains =	-			(66))m + (67)n	• n + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m= 331.43	329.22	318.6	302.03	285.66	269.98	259.97	265.34	274.07	290.81	309.75	323.51		(73)
6. Solar gain	s:												
Solar gains are	calculated	using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	ne applicat	ole orientat	ion.		
Orientation [.]	Arress F	Factor	Area		Fli	IX		a		FF		Gains	

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	4.51	x	11.28	x	0.63	x	0.1	=	2.22	(75)
Northeast 0.9x	0.77	x	4.51	x	22.97	×	0.63	×	0.1	=	4.52	(75)

					_		-	-	_					
Northeast 0	0	x	4.5	1	×	41.38	X	0.63	×	0.1	=	8.15	(75)	
Northeast 0		X	4.5	1	x	67.96	x	0.63	x	0.1	=	13.38	(75)	
Northeast 0	.9x 0.77	x	4.5	1	×	91.35	x	0.63	x	0.1	=	17.99	(75)	
Northeast 0	.9x 0.77	х	4.5	1	x	97.38	x	0.63	x	0.1	=	19.18	(75)	
Northeast 0	.9x 0.77	x	4.5	1	x	91.1	x	0.63	x	0.1	=	17.94	(75)	
Northeast 0	.9x 0.77	x	4.5	1	x	72.63	x	0.63	x	0.1	=	14.3	(75)	
Northeast 0	.9x 0.77	x	4.5	1	×	50.42	x	0.63	x	0.1	=	9.93	(75)	
Northeast 0	.9x 0.77	x	4.5	1	x	28.07	x	0.63	x	0.1	=	5.53	(75)	
Northeast 0	.9x 0.77	x	4.5	1	x	14.2	x	0.63	x	0.1	=	2.8	(75)	
Northeast 0	.9x 0.77	x	4.5	1	×	9.21	x	0.63	x	0.1	=	1.81	(75)	
Southwest ₀	.9x 0.77	x	10.3	35	x	36.79]	0.63	x	0.1	=	16.63	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	62.67]	0.63	x	0.1	=	28.32	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	85.75]	0.63	x	0.1	=	38.75	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	106.25]	0.63	x	0.1	=	48.01	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	119.01]	0.63	x	0.1	=	53.78	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	118.15]	0.63	x	0.1	=	53.39	(79)	
Southwest ₀	.9x 0.77	x	10.3	35	x	113.91]	0.63	x	0.1	=	51.47	(79)	
Southwesto	.9x 0.77	x	10.3	35	×	104.39		0.63	x	0.1	=	47.17	(79)	
Southwest0.9x 0.77 x 10.35 x 104.39 0.63 x 0.1 = 4 Southwest0.9x 0.77 x 10.35 x 92.85 0.63 x 0.1 = 4													(79)	
Southwest $_{0.9x}$ 0.77 x 10.35 x 104.39 0.63 x 0.1 = 47.17														
Southwest 0.9×0.77 x 10.35 x 92.85 0.63 x 0.1 = 41.96														
Sola <mark>r gain</mark> s	s in watts, ca	alculated	l for each	n month			(83)m	n = Sum(74)m	<mark>(8</mark> 2)m					
(83)m= 18	.85 32.84	46.9	61.39	71.76	72	.56 69.41	61.	47 51.88	36.83	22.71	16.04		(83)	
Total gains	s – internal a	nd solar	(84)m =	(73)m	+ (83	3)m, watts			-					
(84)m= 350	0.27 362.06	365.5	363.43	357.42	342	2.54 329.38	326	.81 325.96	327.64	332.45	339.55		(84)	
7. Mean i	nternal temp	erature	(heating	season)									
Temperat	ure during h	eating p	eriods in	the livi	ng a	rea from Ta	ble 9	, Th1 (°C)				21	(85)	
Utilisatior	factor for ga	ains for l	iving are	a, h1,m	ı (se	e Table 9a)	_							
Ji	an Feb	Mar	Apr	May	J	un Jul	A	ug Sep	Oct	Nov	Dec			
(86)m= 0.	99 0.99	0.98	0.95	0.87	0.	67 0.49	0.5	51 0.75	0.94	0.99	1		(86)	
Mean inte	ernal tempera	ature in	living are	ea T1 (fo	ollow	steps 3 to	7 in T	able 9c)						
(87)m= 20	.44 20.51	20.63	20.79	20.93	20	.99 21	2	1 20.98	20.85	20.62	20.42		(87)	
Temperat	ure during h	eating p	eriods in	rest of	dwe	lling from Ta	- able 9	9. Th2 (°C)						
(88)m= 20		20.31	20.32	20.32	-	.33 20.33	20.	í́	20.32	20.32	20.32]	(88)	
	factor for ga	aine for	rest of du	velling	ـــــــــــــــــــــــــــــــــــــ) (see Table			Į	1		1		
(89)m= 0.9		0.98	0.94	0.83	0.	<u> </u>	9a) 0.4	14 0.69	0.92	0.98	0.99	1	(89)	
											5.00	1		
	ernal tempera	ature in 19.84	the rest of 20.08	20.25	<u> </u>	<u> </u>	r –	i	1	10.04	10 55	1	(90)	
(90)m= 19	00 19.00	19.04	20.08	20.25	20	.33 20.33	20.		20.15	19.84 ring area ÷ (4	19.55	0.5	(90)	
										ing area - (4	•, –	0.5	(91)	

Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	20	20.09	20.24	20.44	20.59	20.66	20.67	20.67	20.65	20.5	20.23	19.99		(92)
· · · · ·			1				m Table		· · ·	opriate				
(93)m=	20	20.09	20.24	20.44	20.59	20.66	20.67	20.67	20.65	20.5	20.23	19.99		(93)
		· ·	uirement							1 T ' /'	70)		1-4-	
			ernal ter	•		ed at ste	ep 11 of	I able 9	o, so tha	t II,m=(76)m an	d re-calc	ulate	
Γ	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	tion fac	tor for g	ains, hm	:										
(94)m=	0.99	0.99	0.98	0.94	0.84	0.64	0.45	0.48	0.72	0.93	0.98	0.99		(94)
г	-		, W = (94	, <u>,</u>										()
(95)m=	347.26	357.41	356.74	342.12	301.83	219.45	149.17	156.05	234.48	303.43	326.22	337.14		(95)
г	ly avera	age exte	ernal tem 6.5	perature 8.9	11.7	able 8 14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
(96)m=	-	_					=[(39)m :	-			7.1	4.2		(00)
(97)m=	595.33	574.4	518.29	430.06	330.66	222.59	149.38	156.36	241.72	368.1	490.68	592.73		(97)
L				r each m	nonth, k		h = 0.02)m] x (4 ⁻	1)m			
(98)m=	184.57	145.81	120.19	63.31	21.45	0	0	0	0	48.12	118.41	190.16		
								Tota	l per year	(kWh/year) = Sum(9	8)15,912 =	892.02	(98)
Space	heatin	g require	ement in	kWh/m ²	/year								17.25	(99)
9b. Ene	erdv rec	uiremer	nts – Cor	nmunity	heating	scheme								
							ater heat	ing prov	ided by	a c <mark>omm</mark>	unity sch	neme.		_
Fraction	n <mark>o</mark> f spa	ace heat	from se	condary/	/supplen	nentary l	heating (Table 1	1) '0' if n	one			0	(301)
Fractior	n <mark>o</mark> f spa	ace heat	from co	<mark>mmu</mark> nity	system	1 – (301	1) =						1	(302)
		-					procedure a			up to four o	other heat	sources; ti	he latter	
			s, geother <mark>r</mark> Commun			rom powel	r stations.	See Appel	ndix C.				1	(303a)
					-					(5		``	1	
			heat fro								02) x (303	a) =	1	(304a)
Factor f	or cont	rol and o	charging	method	(Table 4	4c(3)) fo	r commu	unity hea	ating sys	tem			1	(305)
Distribu	tion los	s factor	(Table 1	2c) for c	commun	ity heatii	ng syste	m					1	(306)
Space	heating	9											kWh/year	
Annual	space	heating	requirem	nent									892.02	
Space I	neat fro	m Comr	munity h	eat pum	р				(98) x (30	04a) x (30	5) x (306) =	=	892.02	(307a)
Efficien	cy of se	econdary	y/supple	mentary	heating	system	in % (fro	m Table	e 4a or A	ppendix	E)		0	(308
Space I	neating	require	ment froi	m secon	dary/su	plemen	tary syst	em	(98) x (30	01) x 100 -	÷ (308) =		0	(309)
Water I														_
			equirem										1816.58	
			ty schem nunity he)				(64) x (30)3a) x (30	5) x (306) =	=	1816.58	(310a)
Electric	ity used	d for hea	t distribu	ution				0.01	× [(307a).	(307e) +	· (310a)(310e)] =	27.09	(313)
Cooling	Syster	n Energ	y Efficiei	ncy Ratio	C								0	(314)
Space of	cooling	(if there	is a fixe	d cooling	g systen	n, if not e	enter 0)		= (107) ÷	(314) =			0	(315)

Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside	121.42	(330a)
warm air heating system fans	0	(330b)
pump for solar water heating	0	(330g)
Total electricity for the above, kWh/year =(330a) + (330b) + (330g) =	121.42	(331)
Energy for lighting (calculated in Appendix L)	322.17	(332)
Electricity generated by PVs (Appendix M) (negative quantity)	-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)	0	(334)
12b. CO2 Emissions – Community heating scheme		
Energy Emission factor kWh/year kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel	əl 364	(367a)
CO2 associated with heat source 1 [(307b)+(310b)] x 100 ÷ (367b) x 0.52	386.2	(367)
Electrical energy for heat distribution [(313) x 0.52	= 14.06	(372)
Total CO2 associated with community systems (363)(366) + (368)(372)	400.26	(373)
CO2 associated with space heating (secondary) (309) x 0	= 0	(374)
CO2 associated with water from immersion heater or instantaneous heater (312) × 0.52	- 0	(375)
Total CO2 associated with space and water heating (373) + (374) + (375) =	400.26	(376)
CO2 associated with electricity for pumps and fans within dwelling (331)) × 0.52	63.02	(378)
CO2 associated with electricity for lighting (332))) x 0.52	167.21	(379)
Energy saving/generation technologies (333) to (334) as applicable Item 1 0.52 × 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =	285.35	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =	5.52	(384)
El rating (section 14)	96.05	(385)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
	2 Bed Flat, 219-223			Address:		nh lunat	ion I ON			
Address : 1. Overall dwelling dimer		Colunan	Jour La	ne, Loug	μοιοαί	gn Junci	ION, LOP	NDON		
Ground floor			Area	. ,	(1a) x	Av. Hei	ight(m) 2.5	(2a) =	Volume(m ³) 194.75	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)) 7	7.9	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	194.75	(5)
2. Ventilation rate:										
Number of chimneys	heating h	econdary neating	/ ·	other	1 = [total	x 4	40 =	m ³ per hour	-
Number of open flues		0] ' [_] + [_	0] - L] = Г	0		20 =	0	(6a) (6b)
Number of intermittent fan	IS L				」 「	0	x 1	10 =	0	(7a)
Number of passive vents					F	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	ange <mark>s per</mark> ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	esent, use the value corres				•	uction			0	(11)
If suspended wooden flo		led) or 0. ⁻	1 (seale	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	tripped							0	(14)
Window infiltration				0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -					0	(16)
Air permeability value, o			•	•		etre of e	nvelope	area	2	(17)
If based on air permeabilit						:- b - :			0.1	(18)
Air permeability value applies Number of sides sheltered		s been done	e or a deg	iree all per	meaning	is being us	seu	1	2	(19)
Shelter factor	~			(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo	r monthly wind speed	b						Į		
Jan Feb I	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjust	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
	ate ette echanica		-	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N, (2	3b) = (23a	ı) × Fmv (e	equation (I	N5)) . othe	rwise (23b) = (23a)			0.5 0.5	(23a) (23b)
				iency in %						, (,			73.1	(23c)
					0				,	2h)m + (23h) x [1 – (23c)	-	(200)
(24a)m=		0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23	. 100]	(24a)
		d mech	L anical ve	I entilation	without	heat rec	L coverv (N	L MV) (24h	(22)	L 2b)m + ()	L 23b)			
(24b)m=	r	0	0	0	0	0	0	0	0	0	0	0		(24b)
		use ex	tract ver	ntilation of	or positiv	re input v	ventilatio	n from o	utside					
,				then (24	•	•				.5 × (23b))			
(24c)m=	- 0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous		•				-	-			
	<u>, ,</u>	r	r , ,	m = (22	<i>.</i>	, ,	, 	<u> </u>	<u> </u>	0.5]			l	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
			î .	nter (24a	, <u>,</u>	, <u> </u>	, <u>,</u>	· · · · · · · · · · · · · · · · · · ·	1 Ó		i	i	I	
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
	/IENT	Gro		Openin		Net Ar		U-val		AXU		k-value		AXk
\\ <i>\\</i> :	т	area	(m²)	m	12	A ,n		W/m2		(VV/I	K)	kJ/m²·ł	ς	kJ/K
	ws Type					9.45		/[1/(0.73)-		6.7				(27)
	ws Type					3.15	×1/	/[1/(0.73)-	+ 0.04] =	2.23	╘╴,			(27)
Walls		10.0	05	9.45		0.6	×	0.15	=	0.09	L ļ		╡┝	(29)
Walls		14.	5	0		14.5	×	0.15	=	2.18			$_$ $_$	(29)
Walls		5.3		3.15		2.2	x	0.15	=	0.33				(29)
Total a	area of e	lements	s, m²			29.9								(31)
Party	wall					32	x	0	=	0				(32)
Party	wall					33	x	0	=	0				(32)
Party f	loor					77.9					[(32a)
Party of	ceiling					77.9					[(32b)
Interna	al wall **					82.5					[(32c)
				effective wi nternal wal			ated using	g formula 1	/[(1/U-valı	ıe)+0.04] a	as given in	paragraph	3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)) + (32) =				11.53	(33)
Heat c	apacity	Cm = S	(A x k)						((28).	(30) + (32	2) + (32a).	(32e) =	15893.	1 (34)
Therm	al mass	parame	eter (TMI	⁻ = Cm ÷	- TFA) in	n kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-		ere the de tailed calc	etails of the ulation.	constructi	ion are not	t known pi	recisely the	e indicative	e values of	TMP in T	able 1f		
Therm	al bridg	es : S (L	x Y) cal	culated (using Ap	pendix ł	<						6.02	(36)
			are not kr	nown (36) =	= 0.05 x (3	1)			(0.0)	(0.0)		1		 .
i otal f	abric he	at IOSS							(33) +	(36) =			17.55	(37)

Ventila	tion hea	at loss ca	alculated	monthl	у	-			(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	15.61	15.47	15.34	14.65	14.52	13.83	13.83	13.7	14.11	14.52	14.79	15.06		(38)
Heat tr	ansfer c	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	33.16	33.03	32.89	32.21	32.07	31.39	31.39	31.25	31.66	32.07	32.34	32.62		
								•			Sum(39)1.	12 /12=	32.17	(39)
	<u> </u>	· · ·	HLP), W	1				1	· · ·	= (39)m ÷				
(40)m=	0.43	0.42	0.42	0.41	0.41	0.4	0.4	0.4	0.41	0.41	0.42	0.42	0.44	
Numbe	er of day	s in mo	nth (Tab	le 1a)					,	<pre>Average =</pre>	Sum(40)1.	12/12=	0.41	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			!	ļ	!		!	!				I		
4 Wa	ater heat	tina ener	rav reau	irement:								kWh/ye	ar.	
		ing ono	igy ioqu											
				/ [1 _ ovn			-130)2)] + 0.(1013 v (⁻	FEA _13		42		(42)
	A £ 13.9		+ 1.70 X	r [i - exh	(-0.0003	949 X (11	A -13.9)2)] + 0.0	JU13 X (IFA - 13.	.9)			
								(25 x N)				.72		(43)
		-		usage by r day (all w		-	-	to achieve	a water us	se target o	f			
							·		0.00	Ort	Neu	Dea		
Hot wate	Jan er usage il	Feb n litres per	Mar day for ea	Apr ach month	May Vd.m.= fa	Jun ctor from T	Jul Table 1c x	Aug (43)	Sep	Oct	Nov	Dec		
(44)m=	100.89	, 97.22	93.55	89.88	86.21	82.55	82.55	86.21	89.88	9 <mark>3.55</mark>	97.22	100.89		
(44)111-	100.03	51.22	93.33	03.00	00.21	02.00	02.00	00.21			m(44) ₁₁₂ =		1100.62	(44)
Energy (content of	hot water	used - ca	lculated m	onthly $= 4$.	190 x Vd,r	n x nm x E	OTm / 3600			· · ·			
(45)m=	149.62	130.86	135.03	117.72	112.96	97.47	90.32	103.65	104.89	12 <mark>2.24</mark>	133.43	144.9		
										Fotal = Su	m(45) ₁₁₂ =	-	1443.08	(45)
lf instan	taneous w	ater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)		-			
	22.44		20.25	17.66	16.94	14.62	13.55	15.55	15.73	18.34	20.01	21.73		(46)
	storage		includir		alar ar M		storada	within sa	me ves	ما		400		(47)
0		,		ank in dw			•			501		180		(47)
	•	-			-			ombi boil	ers) ente	er '0' in (47)			
	storage			,					,	,				
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Tempe	erature fa	actor fro	m Table	2b								0		(49)
			-	e, kWh/ye				(48) x (49)) =		1	80		(50)
,				cylinder l rom Tabl								04		(54)
		-	ee secti				iy)				0.	01		(51)
	e factor	-									0.	87		(52)
Tempe	erature fa	actor fro	m Table	2b							0	.6		(53)
Energy	/ lost fro	m water	· storage	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =	0.	97		(54)
Enter	(50) or ((54) in (5	55)								0.	97		(55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)

If cylinder conta	ins dedicate	d solar sto	rage, (57)ı	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m= 30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)
Primary circu	uit loss (ar	nnual) fro	om Table	e 3							0		(58)
Primary circu	uit loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(modified	by factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 23.26	6 21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss o	alculated	for each	month ((61)m =	(60) ÷ 36	65 × (41))m		-				
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat re	quired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 202.9	7 179.05	188.38	169.36	166.31	149.11	143.68	157	156.52	175.59	185.06	198.25		(62)
Solar DHW inpu	ut calculated	using App	endix G or	Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	nal lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix C	G)		-			
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ter											
(64)m= 202.9	7 179.05	188.38	169.36	166.31	149.11	143.68	157	156.52	175.59	185.06	198.25		
	-						Outp	out from wa	ater heate	r (annual)₁	12	2071.28	(64)
Hea <mark>t gains f</mark> i	om water	heating	kWh/m	onth 0.2	5´[0.85	× (45)m	<mark>+ (61)</mark> m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 92.43	82.06	87.58	80.45	80.24	73.72	72.72	77.15	76.18	83.33	85.67	90.86		(65)
in <mark>clude</mark> (5	7)m in cal	culation	of (65)m	only i <mark>f</mark> c	ylinder i	s in th <mark>e</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal	gains (see	e Table {	5 and 5a)):									
Metabolic ga	ins (Table	e 5), Wat	ts										
Jan		Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 121.0	9 121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09	121.09		(66)
Lighting gair	is (calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 27.01	23.99	19.51	14.77	11.04	9.32	10.07	13.09	17.57	22.31	26.04	27.76		(67)
Appliances g	ains (calc	ulated ir	Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		_		
(68)m= 215	217.23	211.6	199.64	184.53	170.33	160.84	158.61	164.23	176.2	191.31	205.51		(68)
Cooking gair	ns (calcula	ated in A	ppendix	L, equat	tion L15	or L15a)), also se	e Table	5				
(69)m= 35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11	35.11		(69)
Pumps and f	ans gains	(Table §	5a)										
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tab	le 5)								
(71)m= -96.8	7 -96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87	-96.87		(71)
Water heatir	ig gains (1	rable 5)											
(72)m= 124.2	<u> </u>	, 117.72	111.73	107.85	102.38	97.74	103.69	105.81	112	118.99	122.12		(72)
Total intern	al gains =				(66)	u m + (67)m	n + (68)m +	- (69)m + ((70)m + (7	1)m + (72)	m		
(73)m= 425.5		408.16	385.47	362.75	341.36	327.98	334.72	346.94	369.84	395.66	414.72		(73)
6. Solar gai	ns:	1	1										
Solar gains ar		using sola	r flux from	Table 6a	and assoc	iated equa	itions to co	nvert to th	e applicat	le orientat	ion.		
Orientation:			Area		Flu			g_		FF		Gains	
	Table 6d		m²		Tal	ble 6a	Т	able 6b	Та	able 6c		(W)	

Northeast 0.9x 0.77 × 3.15 × 11.28 × 0.63 × 0.1 = 1.55 (FS) Northeast 0.9x 0.77 × 3.15 × 22.97 × 0.63 × 0.1 = 5.69 (FG) Northeast 0.9x 0.77 × 3.15 × 14.138 × 0.63 × 0.1 = 5.69 (FG) Northeast 0.9x 0.77 × 3.15 × 0.135 × 0.13 × 0.63 × 0.1 = 1.26 (FG) Northeast 0.9x 0.77 × 3.15 × 0.135 × 0.63 × 0.1 = 1.26 (FG) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.61 = 1.225 (FS) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.1 = 1.25 (FS) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.1 = 1.25 (FS) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.1 = 1.25 (FS) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.1 = 1.25 (FS) Northeast 0.9x 0.77 × 3.15 × 0.11 × 0.63 × 0.1 = 0.999 (FS) Northeast 0.9x 0.77 × 3.15 × 0.22 × 0.63 × 0.1 = 0.999 (FS) Northeast 0.9x 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 0.999 (FS) Northeast 0.9x 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 0.999 (FS) Northeast 0.9x 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 0.26.6 (FS) Northeast 0.9x 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 0.26.6 (FS) Northeast 0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Northeast 0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Southwest0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Southwest0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Southwest0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Southwest0.9x 0.77 × 0.45 × 0.21 × 0.63 × 0.1 = 0.25.6 (FS) Southwest0.9x 0.77 × 0.45 × 0.22 (FS) 0.23 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.1 = 0.1 (FS) Southwest0.9x 0.77 × 0.45 × 0.03 × 0.01 = 0.0 (FS) Northeast0.9x 0.77 × 0.45 × 0.03 × 0.01 = 0.0 (FS) Northeast0.9x 0.77		_									_			_	_					
Northeast 0.5x 0.77 x 3.15 x 4.138 x 0.63 x 0.1 = 5.66 (7) Northeast 0.5x 0.77 x 3.15 x 67.98 x 0.63 x 0.1 = 12.26 (7) Northeast 0.5x 0.77 x 3.15 x 91.35 x 0.63 x 0.1 = 12.26 (7) Northeast 0.5x 0.77 x 3.15 x 91.1 x 0.63 x 0.1 = 12.26 (7) Northeast 0.5x 0.77 x 3.15 x 91.1 x 0.63 x 0.1 = 12.26 (7) Northeast 0.5x 0.77 x 3.15 x 91.1 x 0.63 x 0.1 = 12.23 (7) Northeast 0.5x 0.77 x 3.15 x 14.2 x 0.63 x 0.1 = 6.33 (7) Northeast 0.5x 0.77 x 3.15 x 14.2 x 0.63 x 0.1 = 6.33 (7) Northeast 0.5x 0.77 x 3.15 x 14.2 x 0.63 x 0.1 = 6.43 (7) Northeast 0.5x 0.77 x 3.15 x 14.2 x 0.63 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 1.27 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.53 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.67 x 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.55 5.50 0.63 x 0.1 = 0.53 (7) Southwest 0.5x 0.77 x 0.45 x 0.53 5.50 0.452 0.21 2.01 0.40 (7) Southwest 0.5x 0.77 x 0.45 x 0.53 5.50 0.452 0.21 2.01 0.1 0.20 (7) Southwest 0.5x 0.77 x 0.45 x 0.53 5.50 0.452 0.21 2.01 0.1 0.20 (7) Southwest 0.5x 0.77 x 0.45 x 0.53 5.50 0.452 0.21 2.01 0.1 0.20 (7) Southwest 0.5x 0.77 x 0.45 x 0.53 5.50 0.452 0.21 2.01 0.1 0.20 (7) Southwest 0.5x 0.77 x 0.45 x 0.50 0.50 0.50 0.51 0.50 0.50 0.50 0.50	Northea	st 0.9x	0.77		x	3.1	5	x	1	1.28	×		0.63	`	Ľ	0.1		=	1.55	(75)
Notheast 0.9% 0.77 × 3.15 × 0.766 × 0.63 × 0.1 = 0.25 (75) Notheast 0.9% 0.77 × 3.15 × 0.738 × 0.63 × 0.1 = 1.256 (75) Notheast 0.9% 0.77 × 3.15 × 0.738 × 0.63 × 0.1 = 1.253 (78) Notheast 0.9% 0.77 × 3.15 × 0.263 × 0.63 × 0.1 = 1.253 (78) Notheast 0.9% 0.77 × 3.15 × 0.263 × 0.63 × 0.1 = 0.99 (76) Notheast 0.9% 0.77 × 3.15 × 0.263 × 0.63 × 0.1 = 0.99 (76) Notheast 0.9% 0.77 × 3.15 × 0.224 × 0.63 × 0.1 = 0.99 (76) Notheast 0.9% 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 0.99 (76) Notheast 0.9% 0.77 × 3.15 × 0.21 × 0.63 × 0.1 = 1.97 (75) Southwest0.9% 0.77 × 0.46 × 0.627 0.63 × 0.1 = 1.27 (75) Southwest0.9% 0.77 × 0.46 × 0.627 0.63 × 0.1 = 1.27 (75) Southwest0.9% 0.77 × 0.46 × 0.627 0.63 × 0.1 = 0.58 (79) Notheast 0.9% 0.77 × 0.46 × 0.627 0.63 × 0.1 = 0.58 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.58 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.58 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.53 (79) Southwest0.9% 0.77 × 0.45 × 106.26 0.63 × 0.1 = 0.50 (79) Southwest0.9% 0.77 × 0.45 × 106.30 × 0.1 = 0.50 (79) Southwest0.9% 0.77 × 0.45 × 0.53 5.307.5 307.6 30.7 1 = 0.50 (79) Southwest0.9% 0.77 × 0.45 × 0.50 5.3 0.7 1 = 0.50 (79) Southwest0.9% 0.77 × 0.45 × 0.50 5.3 0.7 1 = 0.50 (79) Southwest0.9% 0.77 × 0.45 × 0.50 5.3 0.7 1 = 0.50 (79) Mean internal temperature (heating pacta from Table 9, Th1 (°C) 21 (65) Utilisation factor for gains for two drelling from Table 9, Th1 (°C) Utilisation factor for gains for text of dwelling from Table 9, Th2 (°C)	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	2	2.97	×		0.63	>		0.1		=	3.16	(75)
Northeast 0.4% 0.77 × 3.15 × 97.38 × 0.63 × 0.1 = 12.66 (%) Northeast 0.2% 0.77 × 3.15 × 97.38 × 0.63 × 0.1 = 12.26 (%) Northeast 0.2% 0.77 × 3.15 × 97.38 × 0.63 × 0.1 = 12.26 (%) Northeast 0.2% 0.77 × 3.15 × 11.1 × 0.63 × 0.1 = 9.99 (%) Northeast 0.2% 0.77 × 3.15 × 12.2 × 0.63 × 0.1 = 0.99 (%) Northeast 0.2% 0.77 × 3.15 × 14.2 × 0.63 × 0.1 = 1.25 (%) Northeast 0.2% 0.77 × 3.15 × 14.2 × 0.63 × 0.1 = 1.25 (%) Northeast 0.2% 0.77 × 3.15 × 14.2 × 0.63 × 0.1 = 1.25 (%) Northeast 0.2% 0.77 × 3.15 × 14.2 × 0.63 × 0.1 = 1.25 (%) Northeast 0.2% 0.77 × 3.15 × 14.2 × 0.63 × 0.1 = 1.25 (%) Northeast 0.2% 0.77 × 9.45 × 82.77 0.63 × 0.1 = 1.25 (%) Southwest0.2% 0.77 × 9.45 × 14.2 × 0.63 × 0.1 = 1.25 (%) Southwest0.2% 0.77 × 9.45 × 102.25 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.1 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.15 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.15 0.63 × 0.1 = 43.84 (%) Southwest0.2% 0.77 × 9.45 × 110.15 0.63 × 0.1 = 25.86 (%) Southwest0.2% 0.77 × 9.45 × 104.28 0.63 × 0.1 = 25.86 (%) Southwest0.2% 0.77 × 9.45 × 104.28 0.64 0.4 1 (%) Southwest0.2% 0.77 × 9.45 × 104.28 0.64 0.4 1 (2.44 0.27 ($3.84.54$ (%) Southwest0.2% 0.77 × 9.45 × 104.48 ($3.93.64$ (3.95 0.76 No Dec (%) Mean internal temperature (heating searcent) Temperature during heating periods in the living area from Table 9, Th (°C) Utilisation factor for gains for text of dwelling from Table 9, Th 2 (°C) (%) Mean i	Northea	st 0.9x	0.77		x	3.1	5	x	4	1.38	x		0.63)		0.1		=	5.69	(75)
Northeast 0.9x 0.77 × 8.15 × 97.38 × 0.63 × 0.1 = 13.39 (rs) Northeast 0.9x 0.77 × 3.15 × 97.38 × 0.63 × 0.1 = 12.53 (rs) Northeast 0.9x 0.77 × 3.15 × 72.63 × 0.63 × 0.1 = 12.53 (rs) Northeast 0.9x 0.77 × 3.15 × 50.42 × 0.63 × 0.1 = 6.99 (r5) Northeast 0.9x 0.77 × 3.15 × 82.07 × 0.63 × 0.1 = 6.99 (r5) Northeast 0.9x 0.77 × 3.15 × 28.07 × 0.63 × 0.1 = 6.99 (r5) Northeast 0.9x 0.77 × 3.15 × 28.07 × 0.63 × 0.1 = 1.85 (r9) Northeast 0.9x 0.77 × 3.15 × 82.07 × 0.63 × 0.1 = 1.85 (r9) Southwesto.9x 0.77 × 8.45 × 85.79 0.63 × 0.1 = 1.27 (r9) Southwesto.9x 0.77 × 8.45 × 85.75 0.63 × 0.1 = 25.86 (r9) Southwesto.9x 0.77 × 8.45 × 85.75 0.63 × 0.1 = 42.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 43.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 43.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 43.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 43.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 44.7 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 43.84 (r9) Southwesto.9x 0.77 × 8.45 × 119.01 0.63 × 0.1 = 44.7 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 42.65 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 42.65 (r9) Southwesto.9x 0.77 × 8.45 × 64.57 0.63 × 0.1 = 42.65 (r9) Southwesto.9x 0.77 × 8.45 × 64.57 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.77 × 8.45 × 64.57 0.43 × 104.39 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.77 × 8.45 × 104.39 0.63 × 0.1 = 12.99 (r9) Southwesto.9x 0.97 0.70 × 8.45 × 104.39 0.90 0.80 0.55 0.99 (r8) Mean internal emperature (heat prometion in the ing area from Table 9.1 Th (°C) (if)ma 0.99 0.98 0.95 0.86 0.7 0.92 0.9	Northea	st 0.9x	0.77		x	3.1	5	x	6	7.96	×		0.63)		0.1		=	9.35	(75)
Northeast 0.5 0.77 x 0.15 x 0.1 x 0.63 x 0.1 = 0.253 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.64 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.15 x 0.63 x 0.1 = 0.99 (75) Northeast 0.5 0.77 x 0.45 x 0.63 x 0.1 = 0.127 (75) Southwest0.5 0.77 x 0.45 x 0.57 0.63 x 0.1 = 0.25.66 (79) Southwest0.5 0.77 x 0.45 x 0.957 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.957 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.957 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.957 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.957 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.113.91 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.113.91 0.63 x 0.1 = 0.43.84 (79) Southwest0.5 0.77 x 0.45 x 0.113.91 0.63 x 0.1 = 0.43.77 (79) Southwest0.5 0.77 x 0.45 x 0.13.91 0.63 x 0.1 = 0.43.77 (79) Southwest0.5 0.77 x 0.45 x 0.13.91 0.63 x 0.1 = 0.43.77 (79) Southwest0.5 0.77 x 0.45 x 0.13.91 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 x 0.13.91 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 x 0.13.91 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 x 0.14 0.12 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 x 0.14 0.12 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 x 0.14 0.15 0.10 0.1 = 0.299 (79) Southwest0.5 0.77 x 0.45 x 0.14 0.15 0.10 0.1 = 0.299 (79) Southwest0.5 0.77 x 0.45 x 0.44 0.75 0.44 0.75 0.45 0.63 x 0.1 = 0.43.97 (79) Southwest0.5 0.77 x 0.45 0.5 0.70 0.5 0.36 0.37 0.56 0.81 0.96 0.99 (8) Mean internal temperature (heating season) Temperature during heating periods in rest of dwelling from Table 90) (7)m 0.20.4 0.20.5 0.20.8 0.36 0.7 0.5 0.36 0.37 0.56 0.81 0.96 0.99 (8) Mean internal temperature in living area 11 (follow steps 3 t	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	9	1.35	x		0.63	>	: [0.1		=	12.56	(75)
Northeast 0.5x 0.77 × 0.15 × 0.22 × 0.63 × 0.1 = 0.99 (75) Northeast 0.5x 0.77 × 0.15 × 0.62 × 0.63 × 0.1 = 0.99 (75) Northeast 0.5x 0.77 × 0.15 × 0.62 × 0.63 × 0.1 = 0.99 (75) Northeast 0.5x 0.77 × 0.15 × 0.62 × 0.63 × 0.1 = 0.95 (75) Northeast 0.5x 0.77 × 0.15 × 0.21 × 0.63 × 0.1 = 0.95 (75) Southwest 0.5x 0.77 × 0.45 × 0.27 · 0.63 × 0.1 = 0.15 (16) (79) Southwest 0.5x 0.77 × 0.45 × 0.627 • 0.63 × 0.1 = 0.518 (79) Southwest 0.5x 0.77 × 0.45 × 0.627 • 0.63 × 0.1 = 0.518 (79) Southwest 0.5x 0.77 × 0.45 × 0.627 • 0.63 × 0.1 = 0.538 (79) Southwest 0.5x 0.77 × 0.45 × 106.25 • 0.63 × 0.1 = 0.538 (79) Southwest 0.5x 0.77 × 0.45 × 106.25 • 0.63 × 0.1 = 0.538 (79) Southwest 0.5x 0.77 × 0.45 × 100.10 • 0.63 × 0.1 = 0.538 (79) Southwest 0.5x 0.77 × 0.45 × 100.10 • 0.63 × 0.1 = 0.538 (79) Southwest 0.5x 0.77 × 0.45 × 118.10 • 0.63 × 0.1 = 0.438 (79) Southwest 0.5x 0.77 × 0.45 × 118.10 • 0.63 × 0.1 = 0.438 (79) Southwest 0.5x 0.77 × 0.45 × 118.10 • 0.63 × 0.1 = 0.437 (79) Southwest 0.5x 0.77 × 0.45 × 118.10 • 0.63 × 0.1 = 0.477 (79) Southwest 0.5x 0.77 × 0.45 × 104.39 • 0.63 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.63 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.63 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.63 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.63 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.487 (79) Southwest 0.5x 0.77 × 0.45 × 0.4407 • 0.65 × 0.1 = 0.618 (79) Temperature during heating periods in the living area from Table 9, Th1 (*C) 1 = 0.482 (64) (6)m 0.59 0.98 0.95 0.96 0.7 0.5 0.56 0.37 0.56 0.81 0.95 0.99 Mean internal temperature (heating season) Mean internal temperature in livi	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	9	7.38	x		0.63	>	: [0.1		=	13.39	(75)
Northeast 0.32 0.77 × 3.15 × 50.42 × 0.63 × 0.1 = 6.83 (75) Northeast 0.52 0.77 × 3.15 × 28.07 × 0.63 × 0.1 = 1.95 (75) Northeast 0.52 0.77 × 3.15 × 9.21 × 0.63 × 0.1 = 1.27 (75) Northeast 0.52 0.77 × 9.45 × 35.79 0.63 × 0.1 = 1.27 (75) Southwest 0.52 0.77 × 9.45 × 35.79 0.63 × 0.1 = 25.86 (79) Southwest 0.52 0.77 × 9.45 × 35.79 0.63 × 0.1 = 25.86 (79) Southwest 0.52 0.77 × 9.45 × 106.25 0.63 × 0.1 = 43.84 (79) Southwest 0.52 0.77 × 9.45 × 106.25 0.63 × 0.1 = 43.84 (79) Southwest 0.52 0.77 × 9.45 × 106.25 0.63 × 0.1 = 43.84 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.81 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.81 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.81 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.81 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.81 (79) Southwest 0.52 0.77 × 9.45 × 118.01 0.63 × 0.1 = 43.87 (79) Southwest 0.52 0.77 × 9.45 × 113.91 0.63 × 0.1 = 43.07 (79) Southwest 0.52 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.07 (79) Southwest 0.52 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.07 (79) Southwest 0.52 0.77 × 9.45 × 40.439 0.63 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 40.429 0.63 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 49.45 × 104.39 0.63 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 49.45 × 31.49 0.65 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 49.45 × 31.49 0.65 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 49.45 × 31.49 0.65 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 9.45 × 49.45 × 31.49 0.65 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 0.53 0.56 0.51 0.52 0.53 × 0.1 = 28.58 (79) Southwest 0.52 0.77 × 0.53 0.56 0.51 0.52 0.50 0.50 0.51 0.50 0.51 0.50 0.50 0.50	Northea	st 0.9x	0.77		x	3.1	5	x	9	91.1	×		0.63	_	Ē	0.1		=	12.53	(75)
Northeast 0.5. 0.77 × 0.15 × 0.63 × 0.1 = 0.86 (75) Northeast 0.5. 0.77 × 0.15 × 0.42 × 0.63 × 0.1 = 1.95 (75) Southwest 0.5. 0.77 × 0.45 × 0.679 0.63 × 0.1 = 0.27 (75) Southwest 0.5. 0.77 × 0.45 × 0.679 0.63 × 0.1 = 0.518 (79) Southwest 0.5. 0.77 × 0.45 × 0.627 0.63 × 0.1 = 0.55.86 (79) Southwest 0.5. 0.77 × 0.45 × 0.625 0.63 × 0.1 = 0.55.86 (79) Southwest 0.5. 0.77 × 0.45 × 0.625 0.63 × 0.1 = 0.43.84 (79) Southwest 0.5. 0.77 × 0.45 × 106.25 0.63 × 0.1 = 0.43.84 (79) Southwest 0.5. 0.77 × 0.45 × 106.25 0.63 × 0.1 = 0.43.84 (79) Southwest 0.5. 0.77 × 0.45 × 106.25 0.63 × 0.1 = 0.43.77 (79) Southwest 0.5. 0.77 × 0.45 × 104.39 0.63 × 0.1 = 0.47 (79) Southwest 0.5. 0.77 × 0.45 × 104.39 0.63 × 0.1 = 0.43.17 (79) Southwest 0.5. 0.77 × 0.45 × 0.43.9 0.63 × 0.1 = 0.43.17 (79) Southwest 0.5. 0.77 × 0.45 × 0.43.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.7 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.63 × 0.1 = 0.43.8 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.43.8 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.44.9 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.43.8 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.44.9 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.44.9 (79) Southwest 0.5. 0.77 × 0.45 × 0.44.9 0.68 × 0.1 = 0.44.9 (79) Southwest 0.5. 0.77 × 0.45 × 0.10.9 (80) Mean internal and solar (84)m = (73)m + (83)m , watts (44)m - 44.2 451.67 448.23 438.65 424.41 403.5 387.7 392.18 402.27 415.8 428.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) Utilisation factor for gains for living area 11 (follow steps 3 to 7 in Table 9C) (7)m - 2.04 2.087 2.038 2.0.88 2.1 2.1 2.1 2.1 2.1 2.0.99 2.038 2.0.83 (67) Temperature during heatin	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	7	2.63	Ī×		0.63	_ _ ,	Ē	0.1		=	9.99	(75)
Northeast 0.4 0 0.77 x 0.15 x 14.2 x 0.63 x 0.1 = 1.95 (7) Northeast 0.5 0.77 x 0.15 x 0.21 x 0.63 x 0.1 = 1.27 (75) Southwest 0.5 0.77 x 0.45 x 0.63 x 0.1 = 15.18 (79) Southwest 0.5 0.77 x 0.45 x 0.625 0.63 x 0.1 = 25.86 (79) Southwest 0.5 0.77 x 0.45 x 0.625 0.63 x 0.1 = 38.38 (79) Southwest 0.5 0.77 x 0.45 x 106.25 0.63 x 0.1 = 43.84 (79) Southwest 0.5 0.77 x 0.45 x 106.25 0.63 x 0.1 = 43.84 (79) Southwest 0.5 0.77 x 0.45 x 106.25 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 106.25 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 113.91 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 43.07 (79) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 43.84 (79) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 43.07 (79) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 447 (75) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 43.07 (79) Southwest 0.5 0.77 x 0.45 x 104.39 0.63 x 0.1 = 12.99 (79) Southwest 0.5 0.77 x 0.45 x 0.4407 0.68 x 0.1 = 12.99 (79) Southwest 0.5 0.77 x 0.45 x 0.4407 0.68 x 0.1 = 12.99 (79) Southwest 0.5 0.77 x 0.45 x 0.4407 0.68 x 0.1 = 12.99 (78) Southwest 0.5 0.77 x 0.45 x 0.31 0.40 (83) m watts (84)m 442.3 451.67 442.3 438.65 424.41 403.5 387.5 387.78 32.18 402.27 415.8 428.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, 11, m (see Table 9a) (60)m 0.99 0.98 0.35 0.86 0.7 0.5 0.38 0.37 0.56 0.81 0.35 0.98 (86) Mean internal temperature in living area 11 (follow steps 3 to 7 in Table 9C) (77m 20.4 2.87 7.03 2.0.98 21 21 21 21 21 2.0.99 20.83 20.83 (87) Temperature during heating periods in rest of dwelling from Table 9. (67)m 20.4 2.87 7.03 2.0.98 20.6 20.6 20.6 120.61 20.61 20.6 20.6 20.6 (89) Utilisation factor for gains for rest of dwelling, h2, m (see Table 9a) (99m 0.88 0.97 0.94 0.84 0	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	5	0.42	x		0.63	_ ,	Ē	0.1		=	6.93	(75)
Northeast $0.9k$ 0.77 x 3.15 x 9.21 x 0.63 x 0.1 = 1.27 (rs) Southwesto, $9k$ 0.77 x 9.45 x 62.67 0.63 x 0.1 = 15.18 (r9) Southwesto, $9k$ 0.77 x 9.45 x 62.67 0.63 x 0.1 = 25.86 (r9) Southwesto, $9k$ 0.77 x 9.45 x 85.75 0.63 x 0.1 = 43.64 (r9) Southwesto, $9k$ 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.64 (r9) Southwesto, $9k$ 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.64 (r9) Southwesto, $9k$ 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.75 (r9) Southwesto, $9k$ 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.77 (r9) Southwesto, $9k$ 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.77 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.77 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.77 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.07 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.61 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.61 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.61 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 28.58 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 12.99 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 12.99 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 12.99 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.63 x 0.1 = 28.58 (r9) Southwesto, $9k$ 0.77 x 9.45 x 104.39 0.53 0.37 0.54 0.11 = 12.99 (r9) Southwesto, $9k$ 0.77 x 9.45 x 0.1 (r9) Southwesto, $9k$ 0.77 x 9.45 x 0.1 (r9) (r9) 10.90 1	Northea	st 0.9x	0.77		x	3.1	5	x	2	8.07	Ī×		0.63	_ _ ,	Ē	0.1		=	3.86	(75)
Southwesto, 9, 0.77 x 9.45 x 0.67 0.63 x 0.1 = 15.18 (79) Southwesto, 9, 0.77 x 9.45 x 0.62.67 0.63 x 0.1 = 25.86 (79) Southwesto, 9, 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.84 (79) Southwesto, 9, 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.84 (79) Southwesto, 9, 0.77 x 9.45 x 119.01 0.63 x 0.1 = 49.1 (79) Southwesto, 9, 0.77 x 9.45 x 119.01 0.63 x 0.1 = 44.77 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.77 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.77 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.77 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.07 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.07 (79) Southwesto, 9, 0.77 x 9.45 x 113.91 0.63 x 0.1 = 48.07 (79) Southwesto, 9, 0.77 x 9.45 x 14.39 0.63 x 0.1 = 48.07 (79) Southwesto, 9, 0.77 x 9.45 x 44.07 0.63 x 0.1 = 48.07 (79) Southwesto, 9, 0.77 x 9.45 x 44.07 0.63 x 0.1 = 48.07 (79) Southwesto, 9, 0.77 x 9.45 x 44.07 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 44.07 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.63 x 0.1 = 128.58 (79) Southwesto, 9, 0.77 x 9.45 x 31.49 0.5 3.0.76 3.0.76 3.0.1 4.020 (100.000000000000000000000000000000000	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x	· ·	14.2	Ī×		0.63	,	Ē	0.1		=	1.95	(75)
Southwesto 9: 0.77 × 9.45 × 62.67 0.63 × 0.1 = 25.86 (9) Southwesto 9: 0.77 × 9.45 × 106.25 0.63 × 0.1 = 43.84 (79) Southwesto 9: 0.77 × 9.45 × 119.01 0.63 × 0.1 = 49.1 (79) Southwesto 9: 0.77 × 9.45 × 119.01 0.63 × 0.1 = 443.75 (79) Southwesto 9: 0.77 × 9.45 × 119.01 0.63 × 0.1 = 443.75 (79) Southwesto 9: 0.77 × 9.45 × 104.39 0.63 × 0.1 = 443.75 (79) Southwesto 9: 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.81 (79) Southwesto 9: 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.71 (79) Southwesto 9: 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.81 (79) Southwesto 9: 0.77 × 9.45 × 9.45 × 0.43.9 0.63 × 0.1 = 43.81 (79) Southwesto 9: 0.77 × 9.45 × 9.45 × 0.43.9 0.63 × 0.1 = 18.18 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.95 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9: 0.80 0.32 0.50 0.50 0.51 0.95 0.99 (86) Mean internal temperature (heating seeson) Temperature during heating periods in the living area from Table 9. Th1 (°C) (80)m 20.59 0.59 0.59 0.59 0.50 2.06 0.6 0.61 0.61 0.61 0.5 0.59 0.50 0.59 (86) Utilisation factor for gains for rest of dwelling f	Northea	st <u>0.9</u> x	0.77		x	3.1	5	x		9.21] ×		0.63	,	Ē	0.1		=	1.27	(75)
Southwest0.9x 0.77 x 9.45 x 85.75 0.63 x 0.1 = 35.38 (79) Southwest0.9x 0.77 x 9.45 x 106.25 0.63 x 0.1 = 43.84 (79) Southwest0.9x 0.77 x 9.45 x 119.01 0.63 x 0.1 = 43.84 (79) Southwest0.9x 0.77 x 9.45 x 113.91 0.63 x 0.1 = 44.75 (79) Southwest0.9x 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.07 (79) Southwest0.9x 0.77 x 9.45 x 104.39 0.63 x 0.1 = 30.7 9.95 x 69.27 0.83 x 0.1 = 38.56 (79) Southwest0.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 31.81 (79) Southwest0.9x 0.77	Southwe	est <mark>0.9x</mark>	0.77		x	9.4	5	x	3	6.79	ī		0.63	Ξ,	Ē	0.1		=	15.18	(79)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Southwe	est <mark>0.9x</mark>	0.77		x	9.4	5	x	6	2.67	i		0.63	Ξ,	Ē	0.1		=	25.86	(79)
Southwest0.9x 0.77 x 9.45 x 119.01 0.63 x 0.1 $=$ 49.1 (79) Southwest0.9x 0.77 x 9.45 x 118.15 0.63 x 0.1 $=$ 48.75 (79) Southwest0.9x 0.77 x 9.45 x 104.39 0.63 x 0.1 $=$ 43.07 (79) Southwest0.9x 0.77 x 9.45 x 104.39 0.63 x 0.1 $=$ 43.07 (79) Southwest0.9x 0.77 x 9.45 x 69.27 0.63 x 0.1 $=$ 48.17 (79) Southwest0.9x 0.77 x 9.45 x 44.07 0.63 x 0.1 $=$ $48.3.07$ (79) Southwest0.9x 0.77 x 9.45 x 44.07 0.63 x 0.1 $=$ $48.3.07$ (79) x 0.45 0.63 x 0.1 $=$	Southwe	est <mark>0.9x</mark>	0.77		x	9.4	5	x	8	5.75	í		0.63	Ξ,	Ē	0.1		=	35.38	(79)
Southwesto $\frac{1}{3}$ 1	Southwe	est <mark>0.9x</mark>	0.77		x	9.4	5	x	10	06.25	i		0.63	Ϊ,	Ē	0.1		=	43.84	(79)
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Southwe	est <mark>0.9x</mark>	0.77		x	9.4	5	x	1	19.01	i		0.63	۲,	Ē	0.1		=	49.1	(79)
Southwesto 9, 0.77 × 9.45 × 104.39 0.63 × 0.1 = 43.07 (79) Southwesto 9, 0.77 × 9.45 × 0.285 0.683 × 0.1 = 38.31 (79) Southwesto 9, 0.77 × 9.45 × 0.827 0.63 × 0.1 = 28.58 (79) Southwesto 9, 0.77 × 9.45 × 0.4407 0.63 × 0.1 = 18.18 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.63 × 0.1 = 12.99 (79) Southwesto 9, 0.77 × 9.45 × 31.49 0.68 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts (84)m = 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (84) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m = 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56 0.81 0.95 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m = 20.84 20.87 20.93 20.98 21 21 21 21 21 20.99 20.93 20.83 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (89)m = 20.59 20.59 20.59 20.6 20.6 20.6 120.61 20.61 20.6 20.6 20.6 (88) Utilisation factor for gains for rest of dwelling from Table 9, Th2 (°C) (89)m = 0.98 0.97 0.94 0.84 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)	Southwe	est0.9x	0.77		x	9.4	5	X	1	18.15	1		0.63	>		0.1		=	48.75	(79)
Southwesto 9x 0.77 x 9.45 92.85 0.63 x 0.1 = 38.31 (79) Southwesto 9x 0.77 x 9.45 x 69.27 0.63 x 0.1 = 28.58 (79) Southwesto 9x 0.77 x 9.45 x 44.07 0.63 x 0.1 = 28.58 (79) Southwesto 9x 0.77 x 9.45 x 44.07 0.63 x 0.1 = 18.18 (79) Southwesto 9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto 9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83)m = 16.73 29.02 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m = 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (64) 7. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m = 20.84 20.87 20.93 20.98 21 21 21 21 21 21 20.99 20.93 20.83 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (89)m = 20.59 20.59 20.6 20.6 20.6 20.61 20.61 20.61 20.6 20.6 20.6 (88) Utilisation factor for gains for rest of dwelling from Table 9, Th2 (°C) (89)m = 0.98 0.97 0.94 0.84 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)	Southwest _{0.9x} 0.77 x 9.45 x 113.91 0.63 x 0.1 = 47														(79)					
Southwesto.3x 0.77 x 9.45 x 69.27 0.63 x 0.1 = 28.58 (79) Southwesto.3x 0.77 x 9.45 x 44.07 0.63 x 0.1 = 18.18 (79) Southwesto.3x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.3x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.3x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.3x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.3x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 28.58 (64) Southwesto.3x calculated for each month (83)m = Sum(74)m(82)m (82)m (84)m (84)m (84)m (84)m <td< td=""><td colspan="15">Southwest_{0.9x} 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.07</td><td>(79)</td></td<>	Southwest _{0.9x} 0.77 x 9.45 x 104.39 0.63 x 0.1 = 43.07															(79)				
Southwesto.9x 0.77 x 9.45 x 69.27 0.63 x 0.1 = 28.58 (79) Southwesto.9x 0.77 x 9.45 x 44.07 0.63 x 0.1 = 18.18 (79) Southwesto.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 $=$ 12.99 (79) (79) (79) (79) (79) (79) (79) <t< td=""><td colspan="14"></td><td>(79)</td></t<>															(79)					
Southwesto.gx 0.77 x 9.45 44.07 0.63 x 0.1 = 18.18 (79) Southwesto.gx 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.gx 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.gx 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.gx 0.77 x 9.45 x 31.49 0.63 x 0.1 = 18.18 (79) Southwesto.gx 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Southwesto.gx 0.22 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Temperature during heating periods in the living area from Table 9, Th1 (°C)																(79)				
Southwest0.9x 0.77 x 9.45 x 31.49 0.63 x 0.1 = 12.99 (79) Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (83) (83)m = 16.73 29.02 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Total gains - internal and solar (84)m = (73)m + (83)m, watts (84)m = 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (84) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m = 0.99 0.98 0.35 0.36 0.37 0.56 0.81 0.95 0.99 (86) Mar Apr May Jun Jul Aug Sep Oct Nov Dec 0.97 0.98 0.37 0.56 0.81 0.95 0.99 (86) Mar Apr May Jun Jul Aug Sep Oc	Southwe	est <mark>0.9x</mark>			x		=	x		_	i –		0.63	Ξ,	Ē	0.1		=	18.18	(79)
Solar gains in watts, calculated for each month (83)m = Sum(74)m(82)m (63)m = 16.73 29.02 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Total gains - internal and solar (84)m = (73)m + (83)m, watts (84)m = 442.3 451.67 449.23 438.65 424.41 403.5 387.75 392.18 402.27 415.8 428.98 (84) Cheating season Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) (86)m = 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56 0.81 0.95 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87)m = 20.84 20.87 20.93 20.82 21 21 21 21.99 20.93 20.83 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m = 20.59 20.59 20.6 20.6 20.61 20.61 <td>Southwe</td> <td>est_{0.9x}</td> <td></td> <td></td> <td>x</td> <td></td> <td></td> <td>х</td> <td>-</td> <td></td> <td>i</td> <td></td> <td></td> <td></td> <td>Ē</td> <td></td> <td></td> <td>=</td> <td></td> <td>(79)</td>	Southwe	est _{0.9x}			x			х	-		i				Ē			=		(79)
(83)m= 16.73 29.02 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (84) Constant temperature (heating season Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56 0.81 0.95 0.89 (86) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56											1	L								
(83)m= 16.73 29.02 41.07 53.18 61.66 62.14 59.53 53.06 45.24 32.44 20.13 14.26 (83) Total gains - internal and solar (84)m = (73)m + (83)m , watts (84)m= 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (84) Constant temperature (heating season Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56 0.81 0.95 0.89 (86) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56	Solar q	ains in v	watts, ca	alcula	ated	for eacl	n mont	h			(83)	m = S	um(74)m .	(82)	m					
(84)m= 442.3 451.67 449.23 438.65 424.41 403.5 387.5 387.78 392.18 402.27 415.8 428.98 (84) T. Mean internal temperature (heating season) Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86) (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.37 0.56 0.81 0.95 0.99 (86) Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) (87) (87)m= 20.84 20.87 20.98 21 21 21 21 20.99 20.93 20.83 (87) Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) (88)m= 20.59 20.59 20.6 20.6 20.61 20.61 20.6 20.6 (88) (89)m= (98)	ſ			I	1				62.14	59.53	53	3.06	45.24	32.	44	20.13	14.	.26		(83)
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) \overline{Aug}	Total g	ains – ir	nternal a	and so	olar	(84)m =	: (73)m	+ (83)m	, watts			<u>.</u>			•			1	
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.81 0.95 0.99 (86)m Mar Apr May Jun Jul Aug Oct Nov Dec (86)m (86)m= 20.84 20.87 20.93 20.61 20.61 20.61 20.61 20.61	(84)m=	442.3	451.67	449.	23	438.65	424.41	4	403.5	387.5	38	7.78	392.18	402	.27	415.8	428	8.98		(84)
Temperature during heating periods in the living area from Table 9, Th1 (°C) 21 (85) Utilisation factor for gains for living area, h1,m (see Table 9a) Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec (86)m= 0.99 0.98 0.95 0.86 0.7 0.5 0.36 0.81 0.95 0.99 (86)m Mar Apr May Jun Jul Aug Oct Nov Dec (86)m (86)m= 20.84 20.87 20.93 20.61 20.61 20.61 20.61 20.61	7. Mea	an inter	nal temp	beratu	ure (heating	seaso	n)					-							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$									area	from Tal	ble 9	9, Th	1 (°C)						21	(85)
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Utilisa	tion fac	tor for g	ains f	for li	ving are	ea, h1,r	n (s	ee Ta	ble 9a)]
Mean internal temperature in living area T1 (follow steps 3 to 7 in Table 9c) $(87)m=$ 20.84 20.87 20.93 20.98 21 21 21 21 21 20.99 20.93 20.83 (87)Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) $(88)m=$ 20.59 20.59 20.6 20.6 20.61 20.61 20.61 20.61 20.6 20.6 (88)Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) $(89)m=$ 0.98 0.97 0.94 0.84 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)	[Jan	Feb	Ma	ar	Apr	May	,	Jun	Jul		٩ug	Sep	0	ct	Nov	D	ec		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	(86)m=	0.99	0.98	0.9	5	0.86	0.7		0.5	0.36	0	.37	0.56	0.8	31	0.95	0.9	99		(86)
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Mean	interna	l temper	ature	in li	iving are	ea T1 (follo	w ste	ns 3 to 7	7 in	Tabl	e 9c)						1	
Temperature during heating periods in rest of dwelling from Table 9, Th2 (°C) $(88)m=$ 20.59 20.59 20.6 20.6 20.61 20.61 20.61 20.61 20.6 <td>г</td> <td></td> <td>· · ·</td> <td></td> <td>-</td> <td></td> <td>,</td> <td>T</td> <td></td> <td></td> <td>1</td> <td></td> <td><u> </u></td> <td>20.</td> <td>99</td> <td>20.93</td> <td>20.</td> <td>.83</td> <td></td> <td>(87)</td>	г		· · ·		-		,	T			1		<u> </u>	20.	99	20.93	20.	.83		(87)
(88)m= 20.59 20.59 20.6 20.6 20.61 20.61 20.61 20.61 20.6 20.6 (88) Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.98 0.97 0.94 0.84 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)							reato	 f_du	alling	from To		о т	الم الم						I	
Utilisation factor for gains for rest of dwelling, h2,m (see Table 9a) (89)m= 0.98 0.97 0.94 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)	Г	-		r	<u> </u>			-			1		r <u>, </u>	20	.6	20.6	20	.6]	(88)
(89)m= 0.98 0.97 0.94 0.84 0.67 0.47 0.32 0.34 0.53 0.79 0.94 0.99 (89)											I								l	()
	г	-		r	-			-			í í		0.50	0-	<u>, 0</u>	0.04	<u> </u>	20	1	(90)
								_								0.94	0.9	99	l	(69)

Mean internal temperature in the rest of dwelling T2 (follow steps 3 to 7 in Table 9c)

			-											
(90)m=	20.37	20.43	20.51	20.58	20.6	20.61	20.61	20.61	20.61	20.59	20.51	20.37		(90)
fLA = Living area ÷ (4) =									0.37	(91)				
Mean	interna	l temper	ature (fo	or the wh	ole dwe	lling) = fl	LA × T1	+ (1 – fL	.A) × T2					
(92)m=	20.54	20.59	20.66	20.73	20.75	20.75	20.75	20.76	20.75	20.74	20.66	20.54		(92)
Apply	adjustn	nent to t	he mear	interna	l temper	ature fro	m Table	4e, whe	ere appro	opriate				
(93)m=	20.54	20.59	20.66	20.73	20.75	20.75	20.75	20.76	20.75	20.74	20.66	20.54		(93)
			uirement											
Set Ti to the mean internal temperature obtained at step 11 of Table 9b, so that Ti,m=(76)m and re-calculate the utilisation factor for gains using Table 9a														
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm						i					
(94)m=	0.98	0.97	0.94	0.84	0.68	0.48	0.34	0.35	0.54	0.8	0.95	0.98		(94)
Useful gains, hmGm , W = (94)m x (84)m														
(95)m=	434.03	438.11	421.57	370.35	289.28	193.15	130.39	136.1	210.56	320.3	393.43	422.47		(95)
	<u> </u>	<u> </u>	r	perature		r		1					I	(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
Heat (97)m=	538.71	518.26	an intern 465.77	al tempe 380.98	290.16	Lm , W = 193.16	=[(39)m 130.39	x [(93)m 136.1	– (96)M 210.61	325.21	438.69	532.87		(97)
						Wh/mont						552.07		(37)
(98)m=	77.88	53.86	32.89	7.65	0.65	0		0	0	3.65	32.59	82.13		
(/								Tota	per vear) = Sum(9		291.3	(98)
Space	a hoatin		amont in	kWh/m²	lvoar								3.74	(99)
		· ·			· _								3.74	(00)
						scheme		ting prov	ided by	0.00mm	unity ook	omo		
This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none										0	(301)			
Fraction of space heat from community system $1 - (301) =$											1	(302)		
	•					rces. The p	,	allouro for	CUDand	un to four	otherheat			(002)
	-	-				rces. The p from power				up to tour	olner neal	sources, li	ne laller	
Fractic	on of hea	at from C	Commun	ity heat	pump								1	(303a)
Fraction of total space heat from Community heat pump (302) × (303a) =										a) =	1	(304a)		
Factor	for cont	rol and o	charging	method	(Table	4c(3)) fo	r commu	unity hea	ting sys	tem			1	(305)
Distribution loss factor (Table 12c) for community heating system											1	(306)		
Space	heating	9											kWh/yea	r
Annual space heating requirement									291.3					
Space heat from Community heat pump(98) x (304a) x (305) x (306) =									291.3	(307a)				
Efficiency of secondary/supplementary heating system in % (from Table 4a or Appendix E)										0	(308			
Space heating requirement from secondary/supplementary system $(98) \times (301) \times 100 \div (308) =$											0	(309)		
Water	heating	I												
Annual water heating requirement											2071.28			
If DHW from community scheme: Water heat from Community heat pump (64) x (303a) x (305) x (306) =										2071.28	(310a)			
Electricity used for heat distribution $0.01 \times [(307a)(307e) + (310a)(310e)] =$									23.63	(313)				

Cooling System Energy Efficiency Ratio				0	(314)	
Space cooling (if there is a fixed cooling system, i	f not enter 0) $= (107) \div (314)$	= (107) ÷ (314) =				
Electricity for pumps and fans within dwelling (Tal mechanical ventilation - balanced, extract or position		182.95	(330a)			
warm air heating system fans		0	(330b)			
pump for solar water heating		0	(330g)			
Total electricity for the above, kWh/year	=(330a) + (330	=(330a) + (330b) + (330g) =				
Energy for lighting (calculated in Appendix L)		476.95	(332)			
Electricity generated by PVs (Appendix M) (negative		-664.99	(333)			
Electricity generated by wind turbine (Appendix N		0	(334)			
12b. CO2 Emissions – Community heating schem	ne					
	Energy kWh/year	Emission factors kg CO2/kWh		nissions CO2/year		
CO2 from other sources of space and water heati Efficiency of heat source 1 (%)	ing (not CHP) there is CHP using two fuels repeat (363) to	(366) for the second	fuel	364	(367a)	
CO2 associated with heat source 1	[(307b)+(310b)] x 100 ÷ (367b) x	0.52	= [336.86	(367)	
Electrical energy for heat distribution	((313) x	0.52	= [12.26	(372)	
Total CO2 associated with community systems	2)	= [349.12	(373)		
CO2 associated with space heating (secondary)	0	= [0	(374)		
CO2 associated with water from immersion heate	= [0	(375)			
Total CO2 associated with space and water heati	[349.12	(376)			
CO2 associated with electricity for pumps and far	= [94.95	(378)			
CO2 associated with electricity for lighting	(332))) x	0.52	= [247.54	(379)	
Energy saving/generation technologies (333) to (334) as applicable	0.52 × 0.01	=	-345.13	(380)	
Total CO2, kg/year sum of (37	6)(382) =			346.48	(383)	
Dwelling CO2 Emission Rate (383) ÷ (4)	=			4.45	(384)	
El rating (section 14)				96.22	(385)	

User Details:											
Assessor Name: Software Name:	tware Name: Stroma FSAP 2012					Stroma Number: Software Version: Versio					
Property Address: Flat 3											
Address : 3 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON 1. Overall dwelling dimensions:											
Ground floor			Area 4		(1a) x	(2a) =	Volume(m³) 124.5	(3a)			
Total floor area TFA = $(1a)+(1b)+(1c)+(1d)+(1e)+(1n)$ 49.8 (4)											
Dwelling volume $(3a)+(3b)+(3c)+(3d)+(3e)+(3n) =$										(5)	
2. Ventilation rate:											
Number of chimneys	heating h	econdary eating	/ · ·	other	1 = [total	x 4	40 =	m ³ per hour](6a)	
Number of open flues	0 +	0]	0] L] = [0		20 =	0	(6b)	
Number of intermittent fans $0 \times 10 = 0$									0	(7a)	
Number of passive vents					Ē	0	x 1	10 =	0	(7b)	
Number of flueless gas fires 0 x 40 =									0	(7c)	
Air ch									ange <mark>s per</mark> hour		
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0 \div (5) = $									0	(8)	
If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (16) Number of storeys in the dwelling (ns) Additional infiltration [(9)-1]x0.1 =										(9) (10)	
if both types of wall are present, use the value corresponding to the greater wall area (after										(11)	
deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0									0	(12)	
If no draught lobby, enter 0.05, else enter 0									0	(13)	
Percentage of windows and doors draught stripped									0	(14)	
Window infiltration	0.25 - [0.2	x (14) ÷ 1	0	(15)							
Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$									0	(16)	
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area									2	(17)	
If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ <i>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used</i> (18)											
Number of sides sheltered		been done	e or a deg	iee all pei	meaning	is being us	seu	[3	(19)	
Shelter factor $(20) = 1 - [0.075 \times (19)] =$									0.78	(20)	
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$									0.08	(21)	
Infiltration rate modified fo	r monthly wind speed	l						ľ			
Jan Feb M	/lar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec			
Monthly average wind spe	ed from Table 7										
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7			
Wind Factor (22a)m = (22))m ÷ 4										
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18			

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m		_			
	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(220)
				endix N, (2	3b) = (23a	a) x Fmv (e	equation (N5)) . other	wise (23b) = (23a)			0.5	(23a) (23b)
				iency in %) (200)			0.5	
			-	-	-					2b)m i (22h) v [1 – (23c)	73.1	(23c)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21 (24a	0.21	0.22	230) × [0.22	0.23	- 100j	(24a)
												0.20	l	(,)
D) II (24b)m=				entilation				0 (240	0 m = (22)	20)m + (. 0	230)	0	1	(24b)
		-		•	-	-	-	-	Ţ	0	0	0		(240)
,				ntilation c hen (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous									1	
i	if (22b)m	n = 1, the	en (24d)	m = (22k	o)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at losses	s and he	eat loss i	oaramete	er:									_
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	AXU		k-value	e	AXk
		area		'n		A ,n	n²	W/m2	K	(VV/	K)	kJ/m²·l	ĸ	kJ/K
Windo	ws Type	1				10.8	x1/	[1/(0.73)+	- 0.04] =	7.66				(27)
Windo	<mark>ws</mark> Type	2				2.475	; x1/	[1/(0.73)+	- 0.04] =	1.76				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.8		8.7	x	0.15] = [1.31				(29)
Walls ⁻	Гуре2	3.5		2.47		1.03	×	0.15	 =	0.15	F i		i i	(29)
Total a	rea of el	lements	, m²			23								(31)
Party v	vall					51.75	j x	0		0				(32)
Party f	_					49.8	\exists		เ		L		\dashv	(32a)
Party c	eiling					49.8					ĺ		\exists	(32b)
Interna	al wall **					45.6					[$\exists \vdash$	(32c)
							ated using	ı formula 1,	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	3.2	
	heat los			nternal wall	s and pan	litions		(26)(30)	+ (32) =				40.07	(22)
	apacity (0)				(20)(00)		(30) + (32	2) + (225)	(220) -	10.87	
			. ,	- Cm ·		k l/m2k				tive Value	· · · ·	(326) =	13269.5	
		-		P = Cm ÷	,			racisaly the				abla 1f	250	(35)
	used instea				constructi	ion ale not	KIIOWII PI	ecisely life	inucative	values of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						5.22	(36)
			are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric hea	at loss							(33) +	(36) =			16.09	(37)
Ventila	tion hea	t loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	9.59	9.51	9.43	9.03	8.95	8.55	8.55	8.47	8.71	8.95	9.11	9.27		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	25.68	25.6	25.52	25.12	25.04	24.64	24.64	24.56	24.8	25.04	25.2	25.36		
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		1	Average =	Sum(39)1	12 /12=	25.1p	age 2 of 39)

Heat loss parameter (HLP), W/m ² K (40)m = $(39)m \div (4)$														
(40)m=	0.52	0.51	0.51	0.5	0.5	0.49	0.49	0.49	0.5	0.5	0.51	0.51		
L	r of dou		nth (Tab						/	Average =	Sum(40) ₁ .	12 /12=	0.5	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
							-							
4. Wat	ter heat	ing enei	rgy requ	irement:								kWh/ye	ear:	
if TFA				[1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.(0013 x (1	TFA -13		68		(42)
Reduce t	he annua	al average		usage by	5% if the a	lwelling is	designed	(25 x N) to achieve		se target o		4.2		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage ii	n litres per	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)					I	
(44)m=	81.62	78.65	75.68	72.72	69.75	66.78	66.78	69.75	72.72	75.68	78.65	81.62		-
Energy c	ontent of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		890.4	(44)
(45)m=	121.04	105.86	109.24	95.24	91.38	78.86	73.07	83.85	84.85	98.89	107.94	117.22		_
lf instanta	aneous w	ater heatii	ng at point	t of use (no	o hot water	storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	-	1167.46	(45)
(46)m=	18.16	15.88	16.39	14.29	13.71	11.83	10.96	12.58	12.73	14.83	16.19	17.58		(46)
Water s	-		includir	na anv so	olar or M	/WHRS	storage	within sa	ame ves	sel		180		(47)
-			and no ta	-								100		()
	-	-			-			ombi boil	ers) ente	er '0' in (47)			
Water s	-												L	
			eclared I		or is kno	wn (kWł	n/day):				1.	85		(48)
•			m Table								0	.6		(49)
•••			storage	-				(48) x (49)) =		1.	11		(50)
,			eclared of factor fr	•								0		(51)
		-	ee secti		- (<i></i>					0		
Volume	factor	from Ta	ble 2a									0		(52)
Temper	rature fa	actor fro	m Table	2b								0		(53)
•••			⁻ storage	e, kWh/y€	ear			(47) x (51)) x (52) x (53) =		0		(54)
		54) in (5									1.	11		(55)
Water s	storage	loss cal	culated	for each	month			((56)m = (55) × (41)r	m				
(56)m=	34.41	31.08	34.41	33.3	34.41	33.3	34.41	34.41	33.3	34.41	33.3	34.41		(56)
If cylinde	r contains	dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	34.41	31.08	34.41	33.3	34.41	33.3	34.41	34.41	33.3	34.41	33.3	34.41		(57)
Primary	/ circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
					,	,	• •	65 × (41)						
Г			r	i	1	1	· · · · · ·	ng and a	· ·	i	, 	-	I	
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi loss calculated for each month $(61)m = (60) \div 365 \times (41)m$														
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	for e	ach month	(62)m =	= 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	178.71	157.95	166.91	151.05	149.06	134.6	7 130.75	141.52	140.67	156.56	163.76	174.89]	(62)
Solar DH	-IW input	calculated	using Ap	pendix G o	r Appendix	H (neg	ative quantity	y) (enter '()' if no sola	r contribut	tion to wate	er heating)	-	
(add a	dditiona	al lines if	FGHRS	S and/or	WWHRS	appli	es, see Ap	pendix	G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	178.71	157.95	166.91	151.05	149.06	134.6	7 130.75	141.52	140.67	156.56	163.76	174.89		_
			-					Out	put from w	ater heate	r (annual)₁	12	1846.5	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.	35 × (45)m	ı + (61)r	n] + 0.8 >	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	86.38	76.87	82.46	76.32	76.52	70.8	7 70.43	74.02	72.86	79.02	80.54	85.11]	(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinde	r is in the	dwelling	or hot w	ater is f	rom com	munity h	- neating	
5. Int	ternal g	ains (see	e Table	5 and 5a):									
Metab	olic daii	ns (Table	e 5). Wa	itts	,									
	Jan	Feb	Mar	Apr	May	Ju	n Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	84.21	84.21	84.21	84.21	84.21	84.2	1 84.21	84.21	84.21	8 <mark>4.21</mark>	84.21	84.21		(66)
Lightin	g gains	, (calcula	ted in A	ppendix	L, equat	ion L9	or L9a), a	lso see	Table 5					
(67)m=	17.77	15.79	12.84	9.72	7.27	6.13	6.63	8.62	11.56	14.68	17.14	18.27		(67)
Applia	nces ga	ains (calc	ulated i	n Appen	dix L, eq	uation	L13 or L1	3a), also	see Ta	ble 5			1	
(68)m=	146.71	148.24	144.4	136.23	125.92	116.2		108.24	112.07	120.24	130.55	140.24		(68)
Cookir	ng gains	s (calcula	ted in A		L. equat	ion L'	5 or L15a), also s	ee Table	5			1	
(69)m=	31.42	31.42	31.42	31.42	31.42	31.4		31.42	31.42	31.42	31.42	31.42		(69)
Pumps	and fa	ins gains	(Table	5a)										
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(70)
Losses	se.a.e	vaporatic	n (nega	ative valu	ı les) (Tab	le 5)		I	1	<u> </u>	1	I	1	
	-67.37	<u> </u>	<u> </u>	1	-67.37	-67.3	7 -67.37	-67.37	-67.37	-67.37	-67.37	-67.37]	(71)
		ı gains (T			ļ				1		1		1	
(72)m=	116.11	114.39	110.83	1	102.85	98.4	3 94.67	99.49	101.2	106.21	111.86	114.4	1	(72)
		l gains =	I			(66)m + (67)m	L 1 + (68)m				I	1	
(73)m=	328.86		316.34	300.21	284.31	269.0		264.6	273.1	289.39	307.81	321.17	1	(73)
	lar gain	1												· ,
			using sol	ar flux from	Table 6a	and ass	ociated equa	ations to c	onvert to th	ne applicat	ole orientat	ion.		
Orienta	ation:	Access F	actor	Area	l	F	lux		g_		FF		Gains	
		Table 6d		m²		-	able 6a	1	Table 6b	Т	able 6c		(W)	
Southe	ast <mark>0.9x</mark>	0.77)	2.4	47	×	36.79	x	0.63	x	0.1	=	3.98	(77)
Southe	ast <mark>0.9x</mark>	0.77	,	2.4	47	× 🗌	62.67	× [0.63		0.1	=	6.77	(77)
Southe	ast <mark>0.9x</mark>	0.77	,	2.4	47	× 🗌	85.75	× [0.63		0.1	=	9.27	(77)
Southe	ast <mark>0.9x</mark>	0.77		2.4	47	× 🗌	106.25	× [0.63		0.1	=	11.48	(77)
Southe	ast <mark>0.9x</mark>	0.77	>	2.4	47	x	119.01	× [0.63	× [0.1	=	12.86	(77)

Southeast 0.9x 0.77 x 2.47 x 118.15 x 0.63 x 0.1 = 12.77 (77)														
Southeast 0.9x	0.77	x	2.47	x	118.	.15	x	0.63	×	0.1	=	12.77	(77)	
Southeast 0.9x	0.77	x	2.47	x	113.	.91	x	0.63	x	0.1	=	12.31	(77)	
Southeast 0.9x	0.77	x	2.47	x	104.	39	x	0.63	_ x [0.1	=	11.28	(77)	
Southeast 0.9x	0.77	x	2.47	×	92.8	35	x	0.63	×	0.1	=	10.03	(77)	
Southeast 0.9x	0.77	x	2.47	×	69.2	27	x	0.63	x	0.1	=	7.48	(77)	
Southeast 0.9x	0.77	×	2.47	×	44.0	07	x	0.63	x	0.1	=	4.76	(77)	
Southeast 0.9x	0.77	×	2.47	×	31.4	49	x	0.63	x	0.1	=	3.4	(77)	
Southwest0.9x	0.77	x	10.8	×	36.7	79		0.63	_ × [0.1	=	17.35	(79)	
Southwest0.9x	0.77	x	10.8	×	62.6	67		0.63	x [0.1	=	29.55	(79)	
Southwest0.9x	0.77	×	10.8	×	85.7	75		0.63	_ × [0.1	=	40.43	(79)	
Southwest0.9x	0.77	×	10.8	×	106.	25		0.63		0.1	=	50.1	(79)	
Southwest0.9x	0.77	×	10.8	×	119.	.01		0.63		0.1	=	56.12	(79)	
Southwest0.9x	0.77	×	10.8	×	118.	.15		0.63	 × [0.1		55.71	(79)	
Southwest0.9x	0.77	×	10.8	×	113.	.91		0.63		0.1		53.71	(79)	
Southwest0.9x	0.77	×	10.8	×	104.	39		0.63	 × [0.1	=	49.22	(79)	
Southwest0.9x	0.77	×	10.8	- ×	92.8	35		0.63	 × [0.1		43.78	(79)	
Southwest0.9x	0.77	×	10.8	×	69.2	27		0.63		0.1		32.66	(79)	
Sout <mark>hwest_{0.9x}</mark>	vesto.9x 0.77 x 10				44.0	07		0.63	x	0.1	=	20.78	(79)	
Sout <mark>hwest_{0.9x}</mark>														
Solar gains ir														
					68 48 6		60.5	Sum(74)m .		25.54	18 25		(83)	
											.0.20			
(83)m= 21.32 36.32 49.7 61.58 68.98 68.48 66.02 60.5 53.81 40.15 25.54 18.25 (83) Total gains – internal and solar (84)m = (73)m + (83)m , watts														
(84)m= 350.18	(84)m= 350.18 363 366.04 361.79 353.28 337.54 325.34 325.11 329.54 333.36 339.42 (84) 7. Mean internal temperature (heating season) 6													
					337.54 3	325.34	325.11	326.91	329.54	333.36	339.42		(84)	
7. Mean inte		ature (heating sea	son)					329.54	333.36	339.42	21	(84)	
7. Mean inte Temperature	ernal tempera	ature (ting pe	heating sea eriods in the	son) living	area fro	om Table			329.54	333.36	339.42	21	_	
7. Mean inte Temperature	ernal tempera e during hea actor for gain	ature (ting pe	heating sea eriods in the ving area, h	son) living	area fro	om Table			329.54	333.36 Nov	339.42 Dec	21	_	
7. Mean inte Temperature Utilisation fa	ernal tempera e during hea actor for gain Feb	ature (ting pe s for li	heating sea eriods in the ving area, h	son) living 1,m (ຄ ay	area fro see Table Jun	om Table e 9a)	e 9, Tl	n1 (°C)				21	_	
7. Mean inter Temperature Utilisation fa (86)m= 0.97	ernal tempera e during hea actor for gain Feb 0.96 (ature (ting pe s for li Mar 0.91	heating sea eriods in the ving area, h Apr N 0.81 0.6	son) living 1,m (s ay	area fro see Table Jun 0.47	om Table e 9a) Jul 0.33	e 9, Tl Aug 0.35	n1 (°C) Sep 0.52	Oct	Nov	Dec	21	(85)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97	ernal temperate during heat actor for gain Feb 0.96 (c) al temperatu	ature (ting pe s for li Mar 0.91	heating sea eriods in the ving area, h Apr N 0.81 0.6	son) living 1,m (s ay 56	area fro see Table Jun 0.47	om Table e 9a) Jul 0.33	e 9, Tl Aug 0.35	n1 (°C) Sep 0.52	Oct	Nov	Dec	21	(85)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81	ernal temperate e during hea actor for gain Feb 0.96 0.96 0.96 0.96 20.86 2	ature (ting po s for li Mar 0.91 tre in l 0.92	heating sea eriods in the ving area, h Apr M 0.81 0.6 iving area T 20.98 2	son) living 1,m (s ay 36 1 (follo	area fro see Table Jun 0.47 ow steps 21	om Table e 9a) Jul 0.33 3 to 7 i 21	e 9, Tl <u>Aug</u> 0.35 in Tab 21	n1 (°C) Sep 0.52 le 9c) 21	Oct 0.77	Nov 0.93	Dec 0.98	21	(85)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81 Temperature	ernal tempera e during hea actor for gain Feb 0.96 (c) al temperatu 20.86 2 e during hea	ature (ting po s for li Mar 0.91 tre in l 0.92	heating sea eriods in the ving area, h Apr M 0.81 0.6 iving area T 20.98 2	son) living 1,m (s ay 1 (follo 1 t of dv	area fro see Table Jun 0.47 ow steps 21 velling fro	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab	e 9, Tl <u>Aug</u> 0.35 in Tab 21	n1 (°C) Sep 0.52 le 9c) 21	Oct 0.77	Nov 0.93	Dec 0.98	21	(85)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81 Temperature (88)m= 20.51	ernal tempera e during hea actor for gain Feb 0.96 (0 al temperatu 20.86 2 e during hea 20.51 2	ature (ting po s for li Mar 0.91 ure in l 0.92 ting po 0.51	heating seaeriods in theving area, hAprN0.810.6iving area T20.982eriods in res20.5220.	son) living 1,m (s ay 1 (follo 1 t of dv 52	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53	e 9, Tl Aug 0.35 in Tab 21 ile 9, T 20.53	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C)	Oct 0.77 20.99	Nov 0.93 20.91	Dec 0.98 20.8	21	(85) (86) (87)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81 Temperature (88)m= 20.51 Utilisation fa	ernal tempera e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain	ature (ting pe s for li Mar 0.91 ire in l 0.92 ting pe 0.51 s for r	heating seaeriods in theving area, hAprN0.810.6iving areaT20.982eriods in res20.5220.est of dwelli	son) living 1,m (s ay 56 1 (folle 1 1 (folle 1 52 ng, h2	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53 2,m (see	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9	e 9, Tl Aug 0.35 in Tab 21 le 9, T 20.53	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C) 20.52	Oct 0.77 20.99 20.52	Nov 0.93 20.91 20.52	Dec 0.98 20.8 20.51	21	(85) (86) (87) (88)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81 Temperature (88)m= 20.51 Utilisation fa (89)m= 0.97	ernal temperate e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain 0.95 0	ature (ting po s for li Mar 0.91 ire in l 0.92 ting po 0.51 s for r 0.9	heating seaeriods in theving area, hAprM0.810.6iving areaT20.982eriods in res20.5220.est of dwellii0.790.6	son) living 1,m (s ay 56 1 (folle 1 1 (folle 1 1 52 52 52 52	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53 2 2,m (see 0.43	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9 0.3	e 9, Tl Aug 0.35 in Tab 21 20.53 0a) 0.31	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C) 20.52 0.49	Oct 0.77 20.99 20.52 0.74	Nov 0.93 20.91	Dec 0.98 20.8	21	(85) (86) (87)	
7. Mean interval 7 . Mean interval 7 . Mean interval 7 . Utilisation fails (86)m= 0.97 Mean interm (87)m= 20.81 Temperature (88)m= 20.51 Utilisation fails (89)m= 0.97 Mean interm	ernal tempera e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain 0.95 a al temperatu	ature (ting po s for li Mar 0.91 ure in l 0.92 ting po 0.51 s for r 0.9	heating sea eriods in the ving area, h Apr N 0.81 0.6 iving area T 20.98 2 eriods in res 20.52 20. est of dwellin 0.79 0.6 he rest of dv	son) living 1,m (s ay 1 (follo 1 1 (follo 1 1 52 1 52 1 52 1 52 1 52 1 52 1 52 1	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53 2 2,m (see 0.43 g T2 (follo	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9 0.3 ow step	e 9, Tl Aug 0.35 in Tab 21 ile 9, 1 20.53 0.31 0.31 os 3 to	n1 (°C) Sep 0.52 le 9c) 21 h2 (°C) 20.52 0.49 7 in Table	Oct 0.77 20.99 20.52 0.74 e 9c)	Nov 0.93 20.91 20.52 0.92	Dec 0.98 20.8 20.51 0.97	21	(85) (86) (87) (88) (89)	
7. Mean inter Temperature Utilisation fa (86)m= 0.97 Mean intern (87)m= 20.81 Temperature (88)m= 20.51 Utilisation fa (89)m= 0.97	ernal tempera e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain 0.95 a al temperatu	ature (ting po s for li Mar 0.91 ire in l 0.92 ting po 0.51 s for r 0.9	heating seaeriods in theving area, hAprM0.810.6iving areaT20.982eriods in res20.5220.est of dwellii0.790.6	son) living 1,m (s ay 1 (follo 1 1 (follo 1 1 52 1 52 1 52 1 52 1 52 1 52 1 52 1	area fro see Table Jun 0.47 ow steps 21 velling fre 20.53 2 2,m (see 0.43 g T2 (follow	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9 0.3 ow step	e 9, Tl Aug 0.35 in Tab 21 20.53 0a) 0.31	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C) 20.52 0.49 7 in Table 20.52	Oct 0.77 20.99 20.52 0.74 e 9c) 20.51	Nov 0.93 20.91 20.52 0.92 20.41	Dec 0.98 20.8 20.51 0.97 20.25		(85) (86) (87) (88) (89) (90)	
7. Mean interval 7 . Mean interval 7 . Mean interval 7 . Utilisation fails (86)m= 0.97 Mean interm (87)m= 20.81 Temperature (88)m= 20.51 Utilisation fails (89)m= 0.97 Mean interm	ernal tempera e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain 0.95 a al temperatu	ature (ting po s for li Mar 0.91 ure in l 0.92 ting po 0.51 s for r 0.9	heating sea eriods in the ving area, h Apr N 0.81 0.6 iving area T 20.98 2 eriods in res 20.52 20. est of dwellin 0.79 0.6 he rest of dv	son) living 1,m (s ay 1 (follo 1 1 (follo 1 1 52 1 52 1 52 1 52 1 52 1 52 1 52 1	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53 2 2,m (see 0.43 g T2 (follo	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9 0.3 ow step	e 9, Tl Aug 0.35 in Tab 21 ile 9, 1 20.53 0.31 0.31 os 3 to	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C) 20.52 0.49 7 in Table 20.52	Oct 0.77 20.99 20.52 0.74 e 9c) 20.51	Nov 0.93 20.91 20.52 0.92	Dec 0.98 20.8 20.51 0.97 20.25	0.47	(85) (86) (87) (88) (89)	
7. Mean intervention of the formula	ernal tempera e during hea actor for gain Feb 0.96 0 al temperatu 20.86 2 e during hea 20.51 2 actor for gain 0.95 a al temperatu	ature (ting po s for li Mar 0.91 ire in l 0.92 ting po 0.51 s for r 0.9 ure in t 0.42	heating seaeriods in theving area, hAprM0.810.6iving areaT20.982eriods in res20.5220.est of dwellii0.790.6he rest of dw20.520.	son) living 1,m (s ay 56 1 (foll(1 1 1 52 52 52 52	area fro see Table Jun 0.47 ow steps 21 velling fro 20.53 2 c,m (see 0.43 g T2 (folk 20.53 2	om Table e 9a) Jul 0.33 3 to 7 i 21 om Tab 20.53 Table 9 0.3 0.3 ow step 20.53	e 9, Tl Aug 0.35 in Tab 21 20.53 0.31 0.31 0.31 0.31 0.53	n1 (°C) Sep 0.52 le 9c) 21 Th2 (°C) 20.52 0.49 7 in Table 20.52 f	Oct 0.77 20.99 20.52 0.74 e 9c) 20.51	Nov 0.93 20.91 20.52 0.92 20.41	Dec 0.98 20.8 20.51 0.97 20.25		(85) (86) (87) (88) (89) (90)	

Apply adjustment to the mean internal temperature from Table 4e, where appropriate

	 	 		1	1	1	1			(00)				
(93)m= 20.52 20.58	20.66 20.72	20.74 20	0.75 20.75	20.75	20.75	20.73	20.65	20.51		(93)				
8. Space heating request Set Ti to the mean information of the set of the se		ura obtainad	at stop 11 o	f Tabla O	h co tha	t Ti m_(76)m an	d ro, colo	ulato					
the utilisation factor for					0, 50 illa	u 11,111=(n ojin an	u le-caic	uiale					
Jan Feb	Mar Apr	May 、	Jun Jul	Aug	Sep	Oct	Nov	Dec						
Utilisation factor for g	ains, hm:													
(94)m= 0.97 0.95	0.9 0.8	0.64 0	.45 0.31	0.33	0.5	0.76	0.92	0.97		(94)				
Useful gains, hmGm	, W = (94)m x (8	34)m												
(95)m= 338.57 344.02	330.62 288.94	225.52 15	1.46 102.2	106.8	164.75	249.44	306.94	330.09		(95)				
Monthly average exte	r i	T T		1				· · · · · ·	l					
(96)m= 4.3 4.9	6.5 8.9		4.6 16.6	16.4	14.1	10.6	7.1	4.2		(96)				
Heat loss rate for me	· · · · ·			1 /	r <u>, ,</u>	r ī		440.50		(07)				
(97)m= 416.48 401.35	361.22 296.95		1.48 102.2	106.8	164.82	253.71	341.39	413.52		(97)				
Space heating require (98)m= 57.96 38.53	22.77 5.77		$\frac{\text{month} = 0.0}{0}$	$\frac{124 \times [(97)]}{0}$)m – (95 0	3.18 3.18	1)m 24.81	62.07						
(90)11= 37.90 30.33	22.11 5.11	0.05	0 0						015 70	(98)				
		- /		TOLA	ii per year	(kwn/yea	r) = Sum(9	0)15,912 =	215.73	(98)				
Space heating requirement in kWh/m²/year 4.33														
9b. Energy requiremer														
9b. Energy requirements – Community heating scheme This part is used for space heating, space cooling or water heating provided by a community scheme. Fraction of space heat from secondary/supplementary heating (Table 11) '0' if none														
		(302)												
The community scheme ma includes boilers, heat pump	he latter													
Fraction of heat from (,					[1	(303a)				
Fraction of total space	heat from Com	munity heat	pump			(3	02) x (303	a) =	1	(304a)				
Factor for control and				unity hea	ating sys	tem			1	(305)				
Distribution loss factor	(Table 12c) for	community h	neating syste	em					1	(306)				
Space heating		-						I	kWh/yea	 r				
Annual space heating	requirement								215.73					
Space heat from Com	munity heat pun	ηp			(98) x (30	04a) x (30	5) x (306)	=	215.73	(307a)				
Efficiency of secondar	y/supplementar	y heating sys	stem in % (fr	om Table	e 4a or A	ppendix	E)		0	(308				
Space heating require	ment from seco	ndary/supple	mentary sys	stem	(98) x (30	01) x 100 ·	÷ (308) =		0	(309)				
Water heating								•						
Annual water heating	requirement							[1846.5					
If DHW from communi Water heat from Comr		D			(64) x (30	03a) x (30	5) x (306) :	-	1846.5	(310a)				
Electricity used for hea				0.01	× [(307a).	(307e) +	⊦ (310a)…((310e)] =	20.62	(313)				
Cooling System Energ		io							0	(314)				
Space cooling (if there			not enter 0)		= (107) ÷	- (314) =			0	(315)				
Electricity for pumps a								l						
mechanical ventilation				n outside					116.96	(330a)				
								-						

warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	116.96	(331)
Energy for lighting (calculated in Appendix L)		313.91	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)		0	(334)
12b. CO2 Emissions – Community heating scheme			
F -	arms Emission feator	Emissions.	

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using	ng two fuels repeat (363) to	(366) for the second fu	el 364	(367a)
CO2 associated with heat source 1 [(307b)	+(310b)] x 100 ÷ (367b) x	0.52	= 294.04	(367)
Electrical energy for heat distribution	[(313) x	0.52	= 10.7	(372)
Total CO2 associated with community systems	(363)(366) + (368)(372	2)	= 304.74	(373)
CO2 associated with space heating (secondary)	(309) x	0	= 0	(374)
CO2 associated with water from immersion heater or instantan	eous heater (312) x	0.52	= 0	(375)
Total CO2 associated with space and water heating	(373) + (374) + (375) =		304.74	(376)
CO2 associated with electricity for pumps and fans within dwel	ling (331)) x	0.52	= 60.7	(378)
CO2 associated with electricity for lighting	(332))) x	0.52	= 162.92	(379)
Energy saving/generation technologies (333) to (334) as applied tem 1	cable	0.52 x 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =			183.23	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =			3.68	(384)
El rating (section 14)			97.41	(385)

			User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 201		;	Stroma Softwa \ddress:	re Ver			Versio	n: 1.0.4.23	
Addross I	3 Bed Flat, 219-223					nh lunct	ion I ON			
Address : 1. Overall dwelling dimer		Columan		ie, Loug	προιοαί	JII JUIICI	ION, LON			
Ground floor			Area		(1a) x	Av. He i	ight(m) 2.5	(2a) =	Volume(m³) 231.5	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	9	2.6	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	231.5	(5)
2. Ventilation rate:										
Number of chimneys		econdary eating 0	′ (] + [other	1 = [total	x 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x2	20 =	0	(6b)
Number of intermittent far	IS				Ĺ	0	x ´	10 =	0	(7a)
Number of passive vents						0	x ^	10 =	0	_ (7b)
Number of flueless gas fir	es					0	X 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
Number of storeys in th Additional infiltration	e dw <mark>elling</mark> (ns)							-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre- deducting areas of opening	esent, use the value corres					uction			0	(11)
If suspended wooden fle	oor, enter 0.2 (unseal	ed) or 0.1	(sealed	d), else	enter 0				0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	ripped							0	(14)
Window infiltration).25 - [0.2			. (45)		0	(15)
Infiltration rate Air permeability value, o	750 overessed in sub	via motros		(8) + (10) -				aroa	0	(16)
If based on air permeabilit	• • •		•	•	•		invelope	alea	0.1	(17) (18)
Air permeability value applies						is being us	sed	l	0.1	
Number of sides sheltered	k							[2	(19)
Shelter factor			(20) = 1 - [0.075 x (1	9)] =			0.85	(20)
Infiltration rate incorporation	ng shelter factor		(21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo		<u> </u>					1			
Jan Feb I	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	- i i									
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	, 1 1	,	r					,		
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	elter an	d wind s	peed) =	: (21a) x	(22a)m					
	0.11	0.11	0.1	0.09	0.09	0.08	0.08	0.08	0.08	0.09	0.1	0.1		
		ctive air al ventila	-	rate for t	he applic	cable ca	se						0.5	(23a)
				endix N, (2	3b) = (23a) × Fmv (e	equation (N5)) . othe	rwise (23b) = (23a)			0.5	(23a)
				ciency in %						, (,			73.1	(23c)
			-	entilation	-					2h)m + (23b) x [[/]	1 – (23c)		(200)
(24a)m=		0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23	. 100]	(24a)
		d mech	ı anical ve	entilation	without	heat rec	L coverv (l	1 MV) (24t	(22)	1 2b)m + ()	1 23b)			
(24b)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24b)
c) If	whole h	use ex	r tract ver	ntilation c	r positiv	e input v	ı ventilatio	n from o	utside					
,				then (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous	•	•								
	· ,	r	r <u>, ,</u>)m = (22b	· · · · · ·		, 	1	<u> </u>	r -	r .			
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
				nter (24a	<u> </u>	, 、	ŕ	,	r`´´	0.00	0.00	0.00		(25)
(25)m=	0.24	0.24	0.24	0.23	0.23	0.22	0.22	0.21	0.22	0.23	0.23	0.23		(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramete	er:						_			
ELEN	1ENT	Gros		Openin m		Net Ar		U-val W/m2		AXU		k-value		A X k kJ/K
Window	ws Type	are <mark>a</mark>	(111-)			A ,r 10.98		/[1/(0.73)·		(W/		KJ/11-•r	`	KJ/K (27)
	ws Type							/[1/(0.73)·			H			
	ws Type					2.7		/[1/(0.73)·		1.92	2			(27)
Walls 1						2.7				1.92	╘┤╷			(27)
		34.		10.98	3	23.52		0.15	=	3.53	╡╏		\dashv	(29)
Walls 7		12.		2.7		9.8	×	0.15		1.47	╡╎		\dashv	(29)
Walls 7		23.2		2.7		20.55		0.15	=	3.08				(29)
		lements	, m²			70.25	5				—			(31)
Party v						47	×	0	=	0	[\dashv	(32)
Party fl						92.6					Ĺ		\exists	(32a)
Party c	-					92.6					Ļ		\exists	(32b)
	l wall **					146.5					Ļ			(32c)
				effective wil nternal wall			ated using	g formula 1	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	3.2	
		s, W/K			,			(26)(30) + (32) =				19.7	(33)
Heat ca	apacity	Cm = S((Axk)						((28).	(30) + (32	2) + (32a).	(32e) =	19835.	1 (34)
Therma	al mass	parame	eter (TMI	P = Cm ÷	TFA) in	kJ/m²K			Indica	tive Value	: Medium		250	(35)
	-			etails of the	constructi	on are not	t known p	recisely the	e indicative	e values of	TMP in Ta	able 1f		
		ad of a de				ا المعامم	/					1		
	-			lculated u			^						7.32	(36)
	abric he		are not Kr	10wn (36) =	0.00 X (3	1)			(33) +	(36) =			27.02	(37)
														` ,

Ventilation heat loss calculated monthly $(38)m = 0.33 \times (25)m \times (5)$													_	
[Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	18.55	18.39	18.23	17.42	17.26	16.44	16.44	16.28	16.77	17.26	17.58	17.91		(38)
Heat tra	ansfer c	oefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	45.57	45.41	45.25	44.44	44.27	43.46	43.46	43.3	43.79	44.27	44.6	44.92		
											Sum(39)	12 /12=	44.4	(39)
г	0.49 0.49	0.49	HLP), W/	0.48	0.48	0.47	0.47	0.47	(40)m 0.47	= (39)m ÷ 0.48	0.48	0.49		
(40)m=	0.49	0.49	0.49	0.40	0.40	0.47	0.47	0.47			0.40 Sum(40)1		0.48	(40)
Numbe	r of day	rs in mo	nth (Tab	le 1a)					,	Wordgo -	Cum(40)1		0.40	
[Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
_														
4. Wat	ter heat	ing ene	rgy requ	irement:								kWh/ye	ear:	
Assum	ed occu	pancy,	N									00		(42)
				[1 - exp	(-0.0003	49 x (TF	- A -13.9)2)] + 0.0)013 x (FFA -13.		.66		(42)
	A £ 13.9							(05 N))					1	
								(25 x N) to achieve		se target o	97 f	.37		(43)
not more	that 125	litres per	person pe	r day (all w	ater use, l	not and co	ld)							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage ii	n litres per	r day for ea	ach m <mark>onth</mark>	Vd,m = fa	ctor from T	Table 1c x	(43)						
(44)m=	107.1	103.21	99.31	95.42	91.52	87.63	87.63	91.52	95.42	99.31	103.21	107.1		_
Energy c	ontent of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	n x nm x E	0Tm / 3600			m(44) ₁₁₂ = ables 1b, 1		1168.4	(44)
(45)m=	158.83	138.92	143.35	124 <mark>.97</mark>	119.92	103.48	95. <mark>8</mark> 9	110.03	111.35	12 <mark>9.76</mark>	141.65	153.82		
lf instanta	aneous w	ater heati	ng at point	of use (no	hot water	• storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	-	1531.96	(45)
(46)m=	23.82	20.84	21.5	18.75	17.99	15.52	14.38	16.5	16.7	19.46	21.25	23.07		(46)
Water 5	-												1	
-		. ,					-	within sa	ame ves	sel		180	l	(47)
Otherw	ise if no	stored		nk in dw er (this ir	•			(47) ombi boil	ers) ente	er '0' in (47)			
Water s a) If ma	-		eclared I	oss facto	or is kno	wn (kWł	n/dav):					0		(48)
,			m Table			X	, , , , , , , , , , , , , , , , , , ,					0		(49)
				, kWh/ye	ear			(48) x (49)) =			80		(50)
b) If ma	anufact	urer's de	eclared o	cylinder l	oss fact									
		-		om Tabl	e 2 (kW	h/litre/da	ıy)				0.	.01		(51)
		eating s from Ta	ee secti ble 2a	on 4.3							0	87		(52)
			m Table	2b								.6		(52)
				, kWh/ye	ear			(47) x (51)) x (52) x (53) =		.97		(54)
		54) in (5										97		(55)
Water s	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m				
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)

If cylinder contains dedicated solar storage, $(57)m = (56)m \times [(50) - (H11)] \div (50)$, else $(57)m = (56)m$ where (H11) is from Appendix H													
(57)m= 30.09	9 27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)
Primary circ	uit loss (ar	nnual) fro	om Table	e 3	-			-			0		(58)
Primary circ		,			59)m = ((58) ÷ 36	65 × (41)	m					
(modified	by factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatii	ng and a	cylinde	r thermo	stat)			
(59)m= 23.20	6 21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss o	calculated	for each	n month ((61)m =	(60) ÷ 36	65 × (41))m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat re	quired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m= 212.1	9 187.11	196.7	176.61	173.27	155.11	149.24	163.39	162.98	183.12	193.28	207.17		(62)
Solar DHW inp	ut calculated	using App	endix G or	Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add addition	nal lines if	FGHRS	and/or V	WWHRS	applies	, see Ap	pendix (G)		-			
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from	water hea	ter											
(64)m= 212.1	9 187.11	196.7	176.61	173.27	155.11	149.24	163.39	162.98	183.12	193.28	207.17		
	_						Outp	out from wa	ater heate	r (annual)₁	12	2160.16	(64)
Hea <mark>t gains f</mark>	rom water	heating	, kWh/mo	onth 0.2	5´[0.85	× (45)m	n + (61)m	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 95.49	84.74	90.35	82.86	82.55	75.71	74.57	79.27	78.33	85.83	88.4	93.83		(65)
in <mark>clude</mark> (5	7)m in cal	culation	of (65)m	only i <mark>f</mark> c	ylinder i	s in th <mark>e</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal	gains (see	e Table {	5 and 5a)):									
Metabolic ga	ains (Table	e 5), Wat	ts										
Jar		Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 132.9	8 132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98	132.98		(66)
Lighting gair	ns (calcula	ted in A	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 30.40	3 27.06	22	16.66	12.45	10.51	11.36	14.76	19.82	25.16	29.37	31.31		(67)
Appliances (gains (calc	ulated ir	n Append	dix L, eq	uation L	13 or L1	3a), also	see Ta	ble 5		_		
(68)m= 243.7	8 246.31	239.94	226.36	209.23	193.13	182.38	179.85	186.22	199.79	216.92	233.02		(68)
Cooking gai	ns (calcula	ated in A	ppendix	L, equat	ion L15	or L15a)), also se	e Table	5				
(69)m= 36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3	36.3		(69)
Pumps and	fans gains	(Table	5a)										
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g.	evaporatio	n (nega	tive valu	es) (Tab	le 5)		•						
(71)m= -106.3	9 -106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39	-106.39		(71)
Water heatir	ng gains (1	Fable 5)		<u> </u>									
(72)m= 128.3	5 126.1	121.43	115.08	110.96	105.16	100.22	106.54	108.79	115.36	122.78	126.11		(72)
Total intern	al gains =				(66)	m + (67)m	n + (68)m +	⊦ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m= 465.4	_ <u>_</u>	446.27	421	395.54	371.7	356.85	364.05	377.72	403.21	431.97	453.34		(73)
6. Solar ga	ins:												
Solar gains ar	e calculated	using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	e applicat	le orientat	ion.		
Orientation:			Area		Flu			g_		FF		Gains	
	Table 6d		m²		Tal	ble 6a	Т	able 6b	Ta	able 6c		(W)	

Northeast 0.9x	0.77	x	2.7	x	11.28	×	0.63	x	0.1] =	1.33	(75)
Northeast 0.9x	0.77	x	2.7	x	22.97	×	0.63	x	0.1	=	2.71	(75)
Northeast 0.9x	0.77	x	2.7	x	41.38	x	0.63	x	0.1	=	4.88	(75)
Northeast 0.9x	0.77	x	2.7	x	67.96	×	0.63	x	0.1] =	8.01	(75)
Northeast 0.9x	0.77	x	2.7	×	91.35	×	0.63	x	0.1] =	10.77	(75)
Northeast 0.9x	0.77	x	2.7	x	97.38	x	0.63	x	0.1	=	11.48	(75)
Northeast 0.9x	0.77	x	2.7	x	91.1	×	0.63	x	0.1	=	10.74	(75)
Northeast 0.9x	0.77	x	2.7	x	72.63	×	0.63	x	0.1	=	8.56	(75)
Northeast 0.9x	0.77	x	2.7	x	50.42	×	0.63	x	0.1] =	5.94	(75)
Northeast 0.9x	0.77	x	2.7	x	28.07	×	0.63	x	0.1] =	3.31	(75)
Northeast 0.9x	0.77	x	2.7	×	14.2	×	0.63	x	0.1] =	1.67	(75)
Northeast 0.9x	0.77	x	2.7	x	9.21	×	0.63	x	0.1	=	1.09	(75)
Southeast 0.9x	0.77	x	2.7	x	36.79	×	0.63	x	0.1] =	4.34	(77)
Southeast 0.9x	0.77	x	2.7	x	62.67	×	0.63	x	0.1	=	7.39	(77)
Southeast 0.9x	0.77	x	2.7	x	85.75	×	0.63	x	0.1	=	10.11	(77)
Southeast 0.9x	0.77	x	2.7	x	106.25	x	0.63	x	0.1	=	12.52	(77)
Southeast 0.9x	0.77	x	2.7	x	119.01	x	0.63	x	0.1	=	14.03	(77)
Southeast 0.9x	0.77	х	2.7	X	118.15	х	0.63	x	0.1	=	13.93	(77)
Southeast 0.9x	0.77	x	2.7	x	113.91	x	0.63	x	0.1	=	13.43	(77)
Southeast 0.9x	0.77	x	2.7	x	104.39	×	0.63	x	0.1	=	12.31	(77)
Southeast 0.9x	0.77	x	2.7	x	92.85	x	0.63	x	0.1	=	10.95	(77)
Southeast 0.9x	0.77	x	2.7	×	69.27	x	0.63	x	0.1	=	8.17	(77)
Southeast 0.9x	0.77	x	2.7	x	44.07	×	0.63	x	0.1	=	5.2	(77)
Southeast 0.9x	0.77	x	2.7	x	31.49	x	0.63	x	0.1	=	3.71	(77)
Southwest _{0.9x}	0.77	x	10.98	x	36.79		0.63	x	0.1	=	17.64	(79)
Southwest _{0.9x}	0.77	x	10.98	x	62.67		0.63	x	0.1	=	30.04	(79)
Southwest _{0.9x}	0.77	x	10.98	x	85.75		0.63	x	0.1	=	41.11	(79)
Southwest _{0.9x}	0.77	x	10.98	x	106.25		0.63	x	0.1	=	50.93	(79)
Southwest _{0.9x}	0.77	x	10.98	x	119.01		0.63	x	0.1	=	57.05	(79)
Southwest0.9x	0.77	x	10.98	x	118.15		0.63	x	0.1	=	56.64	(79)
Southwest _{0.9x}	0.77	x	10.98	x	113.91		0.63	x	0.1	=	54.61	(79)
Southwest _{0.9x}	0.77	x	10.98	x	104.39		0.63	x	0.1	=	50.04	(79)
Southwest0.9x	0.77	x	10.98	×	92.85]	0.63	x	0.1] =	44.51	(79)
Southwest _{0.9x}	0.77	x	10.98	x	69.27]	0.63	x	0.1] =	33.21	(79)
Southwest _{0.9x}	0.77	x	10.98	×	44.07]	0.63	x	0.1] =	21.13	(79)
Southwest _{0.9x}	0.77	x	10.98	x	31.49]	0.63	x	0.1] =	15.09	(79)

Solar gains in watts, calculated for each month(83)m = Sum(74)m(82)m													_	
(83)m=	23.31	40.14	56.09	71.47	81.85	82.05	78.77	70.91	61.4	44.68	27.99	19.89		(83)
Total gains – internal and solar (84)m = (73)m + (83)m , watts													•	
(84)m= 488.79 502.5 502.36 492.47 477.39 453.74 435.62 434.96 439.12 447.89 459.96 473.23													(84)	
7. Mean internal temperature (heating season)														
Temp	erature	during h	eating p	eriods ir	n the livir	ng area f	from Tab	ole 9, Th	1 (°C)				21	(85)
Utilisa	Utilisation factor for gains for living area, h1,m (see Table 9a)													
lan Feb Mar Anr May Jun Jul Aug Sen Oct Nov Dec													Page	5 of 7

(86)m=	1	0.99	0.99	0.95	0.83	0.61	0.44	0.46	0.68	0.93	0.99	1	1	(86)
										0.93	0.99	1		(00)
		i İ	i	<u> </u>	r ·	r	i	7 in Tabl	<u> </u>	00.05	00.04	00.07	1	(07)
(87)m=	20.68	20.73	20.81	20.92	20.98	21	21	21	21	20.95	20.81	20.67		(87)
		i Č		î	î	1	T	able 9, T	<u>, , ,</u>	r	r		1	
(88)m=	20.53	20.53	20.53	20.54	20.54	20.55	20.55	20.55	20.55	20.54	20.54	20.53		(88)
Utilisa	ation fac	tor for g	ains for	rest of d	welling,	h2,m (se	ee Table	9a)	-	-				
(89)m=	1	0.99	0.98	0.93	0.8	0.57	0.39	0.41	0.64	0.91	0.99	1		(89)
Mean	interna	l temper	ature in	the rest	of dwell	ing T2 (f	ollow ste	eps 3 to 3	7 in Tabl	e 9c)				
(90)m=	20.1	20.17	20.29	20.44	20.53	20.55	20.55	20.55	20.54	20.48	20.29	20.09		(90)
								-	I	LA = Livin	g area ÷ (4	4) =	0.35	(91)
Mean	interna	l temper	ature (fo	or the wh	ole dwe	llina) = f	LA x T1	+ (1 – fL	A) x T2					
(92)m=	20.31	20.37	20.47	20.61	20.69	20.71	20.71	20.71	20.7	20.65	20.47	20.3]	(92)
Apply	adjustr	nent to t	he mear	n interna	I temper	ature fro	n Table	e 4e, whe	ere appro	opriate			1	
(93)m=	20.31	20.37	20.47	20.61	20.69	20.71	20.71	20.71	20.7	20.65	20.47	20.3		(93)
8. Spa	ace hea	iting requ	uirement	t										
						ned at st	ep 11 of	Table 9	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
the ut		factor fo	Ŭ	<u> </u>	i		<u> </u>						1	
L LOPE	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
	0.99	tor for g	ains, hm 0.98	n: 0.94	0.81	0.58	0.41	0.43	0.66	0.91	0.00	1	1	(94)
(94)m=		hmGm				0.58	0.41	0.43	0.66	0.91	0.98	1		(34)
(95)m=	486.27	498.08	492.37	461.46	387.11	265.09	178.5	186.54	288.05	408.11	452.94	471.35		(95)
		age exte						100.04	200.00	400.11	402.04	471.00		(00)
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
	loss rate	e for mea	an interr	al tempo	i erature,	L Lm,W:	I =[(39)m	ı x [(93)m	L – (96)m	1			l	
(97)m=	729.42	702.46	632.32	520.34	397.84	265.41	178.51	186.55	289.15	444.77	596.39	723.06		(97)
Space	e heatin	g require	ement fo	r each n	nonth, k	Wh/mon	th = 0.02	24 x [(97)m – (95)m] x (4	1)m		1	
(98)m=	180.9	137.35	104.12	42.39	7.99	0	0	0	0	27.28	103.29	187.28		
					-	-	-	Tota	l per year	(kWh/yeai	[.]) = Sum(9	8)15,912 =	790.59	(98)
Space	e heatin	g require	ement in	kWh/m²	²/year								8.54	(99)
9h En	erav rea	quiremer	nts – Coi	mmunitv	heating	scheme	ć							
								ting prov	ided by	a comm	unitv sch	neme.		
								(Table 1			· · , · · ·		0	(301)
Fractio	n of spa	ace heat	from co	mmunity	v system	1 – (30	1) =						1	(302)
	-	-						allows for		up to four	other heat	sources; t	he latter	
		at from C	-			rom powe	r stations.	See Appel	naix C.				1	(303a)
Fractio	n of tota	al space	heat fro	m Comr	nunity h	eat pum	р			(3	02) x (303	a) =	1	(304a)
Factor	for cont	trol and o	charging	method	l (Table	4c(3)) fo	or commu	unity hea	ating sys	tem			1	(305)
Distrib	ution los	ss factor	(Table 1	12c) for a	commun	ity heati	ng syste	m					1	(306)
Space	heating	g											kWh/ye	ear
Annua	l space	heating	requiren	nent									790.59	

Space heat from Community heat pump	(98) x (304a) x	(305) x (306) =	790.59	(307a)
Efficiency of secondary/supplementary heating system in % (from	Table 4a or Apper	ndix E)	0	(308
Space heating requirement from secondary/supplementary system	(98) x (301) x 1	100 ÷ (308) =	0	(309)
Water heating Annual water heating requirement			2160.16	7
If DHW from community scheme: Water heat from Community heat pump	(64) x (303a) x	(305) x (306) =	2160.16	(310a)
Electricity used for heat distribution	0.01 × [(307a)(307	7e) + (310a)(310e)] =	29.51	(313)
Cooling System Energy Efficiency Ratio			0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0)	= (107) ÷ (314)) =	0	(315)
Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from ou	tside		194.17	(330a)
warm air heating system fans			0	(330b)
pump for solar water heating			0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330	b) + (330g) =	194.17	(331)
Energy for lighting (calculated in Appendix L)			537.95	(332)
Electricity generated by PVs (Appendix M) (negative quantity)			-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quant	tity)		0	(334)
12b. CO2 Emissions – Community heating scheme				
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%)	Energy kWh/year	Emission factor kg CO2/kWh (366) for the second fue	kg CO <mark>2/yea</mark> r	(367a)
	0b)] x 100 ÷ (367b) x	0.52	= 420.72	(367)
Electrical energy for heat distribution [(31	3) x	0.52	= 15.31	(372)
Total CO2 associated with community systems (36	3)(366) + (368)(37	 2) ⁼	= 436.04](373)
CO2 associated with space heating (secondary) (30	9) x	0	= 0	(374)
CO2 associated with water from immersion heater or instantaneou	s heater (312) x	0.52	= 0	(375)
Total CO2 associated with space and water heating (37	3) + (374) + (375) =		436.04	(376)
CO2 associated with electricity for pumps and fans within dwelling	(331)) x	0.52	= 100.77	(378)
CO2 associated with electricity for lighting (33	2))) x	0.52	= 279.2	(379)
Energy saving/generation technologies (333) to (334) as applicable Item 1	e	0.52 × 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =			470.88	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =			5.09	(384)
El rating (section 14)			95.41	(385)

		ι	User De	etails:						
Assessor Name: Software Name:	Stroma FSAP 2012		;	Stroma Softwa	re Ver			Versio	n: 1.0.4.23	
	2 Bed Flat, 219-223			Address:		nh lunat	ion I ON			
Address : 1. Overall dwelling dimer		Columato	our Lar	ne, Loug	προιοαί	in Junci	ION, LOP	NDON		
Ground floor			Area		(1a) x	Av. Hei	ight(m) 2.5	(2a) =	Volume(m ³ 192) (3a)
Total floor area TFA = (1a	a)+(1b)+(1c)+(1d)+(1e))+(1n)	7	6.8	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	192	(5)
2. Ventilation rate:										
	heating h	condary eating		other	, r	total			m ³ per hou	_
Number of chimneys	0 +	0	+	0] = [] = [0		40 = 20 =	0	(6a)
Number of open flues Number of intermittent far		0		0		0		0 = 10 =	0	(6b) (7a)
Number of passive vents						0		0 =	0	(7a)
Number of flueless gas fir	es					0		40 =	0	(70)
					L	0		Air ch	anges per ho	
Infiltration due to chimney						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in th Additional infiltration	e dwelling (ns)							1]x0.1 =	0	(9) (10)
deducting areas of opening	esent, use the value corresp gs); if equal user 0.35	oonding to th	he greate	er wall area	a (after	uction			0	(11)
If suspended wooden fl		ed) or 0.1	(seale	d), else	enter 0				0	(12)
If no draught lobby, ent									0	(13)
Percentage of windows Window infiltration	and doors draught str	прреа	(0.25 - [0.2	x (14) ÷ 1	001 -			0	(14)
Infiltration rate				(8) + (10) -			+ (15) =		0	(15) (16)
Air permeability value, o	a50. expressed in cubi	ic metres						area	2	(17)
If based on air permeabilit			•	•	•				0.1	(18)
Air permeability value applies	-					is being us	sed	I	-	
Number of sides sheltered	b								1	(19)
Shelter factor				(20) = 1 - [9)] =			0.92	(20)
Infiltration rate incorporati	-		((21) = (18)	x (20) =				0.09	(21)
Infiltration rate modified for		i				_				
Jan Feb	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe				I				1		
(22)m= 5.1 5	4.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22	· · · · ·		,				1			
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltr	ation rat	e (allow	ing for sh	nelter an	d wind s	peed) =	(21a) x	(22a)m					
	0.12	0.12	0.11	0.1	0.1	0.09	0.09	0.09	0.09	0.1	0.1	0.11]	
		<i>ctive air</i> al ventila	-	rate for t	he appli	cable ca	se							(23a)
				endix N, (2	(23a) = (23a	a) x Fmv (e	equation (I	N5)), othe	rwise (23b	(23a) = (23a)			0.5	
				ciency in %						<i>(</i> 200)			0.5	(23b)
			-	-	-					2b)m + (2	23h) v [[,]	1 _ (23c)	73.1 ÷ 1001	(23c)
(24a)m=	0.25	0.25	0.25	0.24	0.23	0.22	0.22	0.22	0.23	0.23	0.24	0.24]	(24a)
										2b)m + (2	-	•]	· · ·
(24b)m=	0			0	0	0			0	0	0	0	ן	(24b)
	u whole h	I Iouse ex	I tract ver	ntilation of	r positiv	l ve input v	l ventilatio	n from o	L outside				J	
,					•	•				.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
,				ole hous	•					-		-	-	
1	· ,	r	r í j)m = (22l	ŕ	r Ì	, 	1	r			-	1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
1		<u> </u>		nter (24a	, <u>,</u>	<u> </u>	, <u>,</u>	· · · · · · · · · · · · · · · · · · ·	<u> </u>			i	1	()
(25)m=	0.25	0.25	0.25	0.24	0.23	0.22	0.22	0.22	0.23	0.23	0.24	0.24		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	paramete	er:									
ELEN		Gros are <mark>a</mark>		Openin m		Net Ar A ,r		U-val W/m2		A X U (W/ł	<)	k-value kJ/m²·l		A X k kJ/K
Windov	ws Type	e 1				2.7	x1/	/[1/(0.73)-	+ 0.04] =	1.92				(27)
Windov	ws Type	∋2				3.6	x1/	/[1/(0.73)-	+ 0.04] =	2.55				(27)
Windov	ws Type	e 3				7.2	×1/	/[1/(0.73)-	+ 0.04] =	5.11	F.			(27)
Window	ws Type	e 4				4.94	x1/	/[1/(0.73)-	+ 0.04] =	3.5	5			(27)
Walls 1	Гуре1	5		2.7		2.3	x	0.15	=	0.35				(29)
Walls 7	Гуре2	31.	5	3.6		27.9	x	0.15	= [4.19	ז ד		$\exists \vdash$	(29)
Walls 7	ГуреЗ	22.7	75	7.2		15.55	5 X	0.15		2.33	ז ד		$\exists \vdash$	(29)
Walls 7	Гуре4	15	;	4.94		10.06	3 X	0.15		1.51	ז ר		= =	(29)
Total a	rea of e	elements	, m²			74.25	5	μ						(31)
Party v	vall					37.5	x	0	=	0				(32)
Party f	loor					76.8			I		L		\dashv	(32a)
Party c	eiling					76.8					L L		\dashv	(32b)
-	ul wall **					117					L L		\dashv	(32c)
* for win	dows and	l roof wind		effective wi nternal wal		alue calcul	ated using	g formula 1	!/[(1/U-valı	ıe)+0.04] a	L s given in	paragraph	L 1 3.2	(1 - 7
		ss, W/K :						(26)(30)) + (32) =				21.45	(33)
		Cm = S(•	-					((28)	(30) + (32	2) + (32a).	(32e) =	16870.	

Thermal mass parameter (TMP = Cm ÷ TFA) in kJ/m²K

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f can be used instead of a detailed calculation.

Thermal bridges : S (L x Y) calculated using Appendix K

250

Indicative Value: Medium

(35)

		00	are not kr	10wn (36) =	= 0.05 x (3	:1)								_
Total f	fabric he	at loss							(33) +	(36) =			29.44	(37)
Ventila	ation hea	at loss c	alculated	d monthly	y				(38)m	= 0.33 × (25)m x (5)		•	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	15.99	15.85	15.7	14.97	14.82	14.09	14.09	13.94	14.38	14.82	15.12	15.41		(38)
Heat t	ransfer o	coefficie	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	45.44	45.29	45.15	44.41	44.27	43.53	43.53	43.39	43.83	44.27	44.56	44.85		
		•		1		•		1		Average =	Sum(39)1	12 /12=	44.38	(39)
Heat I	oss para	ameter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)		1	
(40)m=	0.59	0.59	0.59	0.58	0.58	0.57	0.57	0.56	0.57	0.58	0.58	0.58		_
Numb	er of day	ys in mo	nth (Tab	ole 1a)						Average =	Sum(40)1	12 /12=	0.58	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
			•										•	
4. W	ater hea	tina ene	rav reau	irement:								kWh/y	ear:	
		Ŭ											-	
	ned occu			([1 oyn	(0 0003	240 v /TE	= 120)2)] + 0.0	1012 v (TEA 12		.4	J	(42)
	FA £ 13.		+ 1.70 /	(li-exp	(-0.000	043 X (11	A-13.5	()2)] + 0.0	5015 X (II A - 13.	.9)			
								(25 x N)				.18		(43)
		-		usage by . r day (all w		-	-	to achieve	a water us	se target o	f			
ποι πιοι			person pe	r day (all w		101 and co							,	
	Jan	Feb	Mar	Apr	May	Jun		Aug	Sep	Oct	Nov	Dec		
	_			ach month						_		I	1	
(44)m=	100.3	96.66	93.01	89.36	85.71	82.07	82.07	85.71	89.36	93.01	96.66	100.3		-]
Energy	content of	f hot water	used - ca	lculated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		10 <mark>94.21</mark>	(44)
(45)m=	148.75	130.09	134.25	117.04	112.3	96.91	89.8	103.05	104.28	121.52	132.65	144.05		
										Total = Su	m(45) ₁₁₂ =	=	1434.68	(45)
lf instar	ntaneous v	vater heati	ng at point	t of use (no	o hot water	r storage),	enter 0 in	boxes (46) to (61)				•	
(46)m=		19.51	20.14	17.56	16.85	14.54	13.47	15.46	15.64	18.23	19.9	21.61		(46)
	storage) includir		alar ar M		ctorogo	within sa		col		400	1	(47)
-	-	. ,		ank in dw			-			301		180	J	(47)
	•	•			•			ombi boil	ers) ente	≥r '0' in <i>(</i>	(47)			
	storage		not wat			notantai								
	-		eclared l	loss facto	or is kno	wn (kWł	n/day):					0]	(48)
Temp	erature f	actor fro	m Table	e 2b								0		(49)
Energ	y lost fro	om watei	r storage	e, kWh/ye	ear			(48) x (49)) =		1	80		(50)
-	•		-	cylinder l		or is not	known:				·		1	· · ·
		-		rom Tabl	le 2 (kW	h/litre/da	ay)				0.	.01]	(51)
	munity ł	-		on 4.3									1	
	ne factor			2h								87	-	(52)
	erature f							(50)		.6]	(53)
-	•		-	e, kWh/ye	ear			(47) x (51)) x (52) x (53) =		97	-	(54)
ciller	⁻ (50) or	(34) 111 (3	55)								0.	.97		(55)

Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)
If cylind	er contain	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	lix H	
(57)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)
Prima	y circuit	loss (ar	nnual) fro	om Table	e 3	-				-	-	0		(58)
	•	•	culated			59)m = ((58) ÷ 36	65 × (41)	m					
(mo	dified by	factor f	rom Tab	le H5 if t	here is s	solar wat	er heatii	ng and a	cylinde	r thermo	stat)			
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 36	65 × (41))m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	ı
(62)m=	202.1	178.28	187.6	168.67	165.65	148.54	143.15	156.4	155.91	174.88	184.29	197.41		(62)
Solar DI	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	/) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)					
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter							-				
(64)m=	202.1	178.28	187.6	168.67	165.65	148.54	143.15	156.4	155.91	174.88	184.29	197.41		_
								Outp	out from w	ater heate	r (annual)₁	12	2062.88	(64)
Hea <mark>t g</mark>	ains fro	m water	heating,	, kWh/m	onth 0.2	5	× (45)m	+ (61)n	n] + 0.8 x	k [(46)m	+ (57)m	+ (59)m]	
(65)m=	<mark>6</mark> 8.07	60.07	63.25	56.92	55.95	5 <mark>0.23</mark>	48.47	52.87	52.68	59.02	62.12	66.51		(65)
inclu	ude (57)	m in calc	culation of	of (65)m	only if c	ylinder i	s in t <mark>he</mark> o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	<mark>mu</mark> nity h	neating	
5. In	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	olic gair	s (Table	e 5), Wat	ts				i		_				
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	119.97	119.97	119.97	119.97	119.97	119.97	119.97	440.07			119.97	119.97		(00)
Lightin							110.07	119.97	119.97	119.97			J	(66)
(67)m=	ig gains	(calcula	ted in Ap	pendix	L, equat	ion L9 o				119.97]	(66)
· · ·	25.99	<u>`</u>	· · · ·	·	L, equat	ion L9 o 8.97				21.47	25.06	26.72]	(66)
	25.99	23.09	· · ·	14.21	10.63	8.97	r L9a), a 9.69	lso see 12.6	Table 5 16.91	21.47	25.06]	
Applia	25.99	23.09 ins (calc	18.78	14.21	10.63	8.97	r L9a), a 9.69	lso see 12.6	Table 5 16.91	21.47	25.06 189.2]	
Applia (68)m=	25.99 nces ga 212.62	23.09 ins (calc 214.83	18.78 ulated in	14.21 Append 197.43	10.63 dix L, eq 182.49	8.97 uation L 168.45	r L9a), a 9.69 13 or L1 159.07	lso see 12.6 3a), also 156.86	Table 5 16.91 see Ta 162.42	21.47 ble 5 174.26		26.72]	(67)
Applia (68)m=	25.99 nces ga 212.62	23.09 ins (calc 214.83	18.78 ulated ir 209.27	14.21 Append 197.43	10.63 dix L, eq 182.49	8.97 uation L 168.45	r L9a), a 9.69 13 or L1 159.07	lso see 12.6 3a), also 156.86	Table 5 16.91 see Ta 162.42	21.47 ble 5 174.26		26.72]]]	(67)
Applia (68)m= Cookir (69)m=	25.99 nces ga 212.62 ng gains 35	23.09 ins (calc 214.83 (calcula 35	18.78 culated in 209.27 ated in A	14.21 Append 197.43 ppendix 35	10.63 dix L, eq 182.49 L, equat	8.97 uation L 168.45 tion L15	r L9a), a 9.69 13 or L1 159.07 or L15a)	lso see 12.6 3a), also 156.86), also se	Table 5 16.91 see Ta 162.42 ee Table	21.47 ble 5 174.26	189.2	26.72 203.24]]]	(67) (68)
Applia (68)m= Cookir (69)m=	25.99 nces ga 212.62 ng gains 35	23.09 ins (calc 214.83 (calcula 35	18.78 sulated in 209.27 ated in A 35	14.21 Append 197.43 ppendix 35	10.63 dix L, eq 182.49 L, equat	8.97 uation L 168.45 tion L15	r L9a), a 9.69 13 or L1 159.07 or L15a)	lso see 12.6 3a), also 156.86), also se	Table 5 16.91 see Ta 162.42 ee Table	21.47 ble 5 174.26	189.2	26.72 203.24]]]	(67) (68)
Applia (68)m= Cookir (69)m= Pumps (70)m=	25.99 nces ga 212.62 ng gains 35 s and fat 0	23.09 ins (calc 214.83 (calcula 35 ns gains 0	18.78 ulated ir 209.27 ated in A 35 (Table 5	14.21 Append 197.43 ppendix 35 5a) 0	10.63 dix L, eq 182.49 L, equat 35 0	8.97 uation L 168.45 tion L15 35 0	r L9a), a 9.69 13 or L1 159.07 or L15a) 35	lso see 12.6 3a), also 156.86 , also se 35	Table 5 16.91 see Ta 162.42 ee Table 35	21.47 ble 5 174.26 5 35	189.2 35	26.72 203.24 35]]]	(67) (68) (69)
Applia (68)m= Cookir (69)m= Pumps (70)m=	25.99 nces ga 212.62 ng gains 35 s and fat 0	23.09 ins (calc 214.83 (calcula 35 ns gains 0	18.78 ulated in 209.27 ated in A 35 (Table 5 0	14.21 Append 197.43 ppendix 35 5a) 0	10.63 dix L, eq 182.49 L, equat 35 0	8.97 uation L 168.45 tion L15 35 0	r L9a), a 9.69 13 or L1 159.07 or L15a) 35	lso see 12.6 3a), also 156.86 , also se 35	Table 5 16.91 see Ta 162.42 ee Table 35	21.47 ble 5 174.26 5 35	189.2 35	26.72 203.24 35]]]]	(67) (68) (69)
Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=	25.99 nces ga 212.62 ng gains 35 s and fa 0 s e.g. ev -95.97	23.09 ins (calc 214.83 (calcula 35 ns gains 0 vaporatic	18.78 209.27 ated in A 35 (Table 5 0 on (nega -95.97	14.21 Append 197.43 ppendix 35 5a) 0 tive valu	10.63 dix L, eq 182.49 L, equat 35 0 es) (Tab	8.97 uation L 168.45 tion L15 35 0 le 5)	r L9a), a 9.69 13 or L1 159.07 or L15a) 35 0	lso see 12.6 3a), also 156.86), also se 35 0	Table 5 16.91 9 see Ta 162.42 2ee Table 35 0	21.47 ble 5 174.26 5 35 0	189.2 35 0	26.72 203.24 35 0]]]]	(67) (68) (69) (70)
Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m=	25.99 nces ga 212.62 ng gains 35 s and fa 0 s e.g. ev -95.97	23.09 ins (calc 214.83 (calcula 35 ns gains 0 raporatic -95.97	18.78 209.27 ated in A 35 (Table 5 0 on (nega -95.97	14.21 Append 197.43 ppendix 35 5a) 0 tive valu	10.63 dix L, eq 182.49 L, equat 35 0 es) (Tab	8.97 uation L 168.45 tion L15 35 0 le 5)	r L9a), a 9.69 13 or L1 159.07 or L15a) 35 0	lso see 12.6 3a), also 156.86), also se 35 0	Table 5 16.91 9 see Ta 162.42 2ee Table 35 0	21.47 ble 5 174.26 5 35 0	189.2 35 0	26.72 203.24 35 0]]]]	(67) (68) (69) (70)
Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	25.99 nces ga 212.62 ng gains 35 s and fa 0 s e.g. ev -95.97 heating 91.49	23.09 ins (calc 214.83 (calcula 35 ns gains 0 raporatic -95.97 gains (T	18.78 18.78 18.78 18.78 18.78 18.78 18.78 18.78 10.72 18.78 18.78 10.72 18.78 10.72 10	14.21 197.43 197.43 ppendix 35 5a) 0 tive valu -95.97	10.63 dix L, eq 182.49 L, equat 35 0 es) (Tab -95.97	8.97 uation L 168.45 tion L15 35 0 le 5) -95.97 69.77	r L9a), a 9.69 13 or L1 159.07 or L15a) 35 0 -95.97 65.15	lso see ⁻ 12.6 3a), also 156.86), also se 35 0 -95.97	Table 5 16.91 9 see Ta 162.42 9 ee Table 35 0 -95.97 73.17	21.47 ble 5 174.26 5 35 0 -95.97 79.32	189.2 35 0 -95.97 86.27	26.72 203.24 35 0 -95.97 89.39]]]]	(67) (68) (69) (70) (71)
Applia (68)m= Cookir (69)m= Pumps (70)m= Losses (71)m= Water (72)m=	25.99 nces ga 212.62 ng gains 35 s and fa 0 s e.g. ev -95.97 heating 91.49	23.09 ins (calc 214.83 (calcula 35 ns gains 0 vaporatic -95.97 gains (T 89.38	18.78 18.78 18.78 18.78 18.78 18.78 18.78 18.78 10.72 18.78 18.78 10.72 18.78 10.72 10	14.21 197.43 197.43 ppendix 35 5a) 0 tive valu -95.97	10.63 dix L, eq 182.49 L, equat 35 0 es) (Tab -95.97	8.97 uation L 168.45 tion L15 35 0 le 5) -95.97 69.77	r L9a), a 9.69 13 or L1 159.07 or L15a) 35 0 -95.97 65.15	lso see 12.6 3a), also 156.86), also se 35 0 -95.97 71.07	Table 5 16.91 9 see Ta 162.42 9 ee Table 35 0 -95.97 73.17	21.47 ble 5 174.26 5 35 0 -95.97 79.32	189.2 35 0 -95.97 86.27	26.72 203.24 35 0 -95.97 89.39]]]]]	(67) (68) (69) (70) (71)

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation: Access Factor Table 6d		Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x 0.77	x	3.6	x	11.28	x	0.63	x	0.1	=	1.77	(75)
Northeast 0.9x 0.77	x	3.6	x	22.97	x	0.63	x	0.1	=	3.61	(75)
Northeast 0.9x 0.77	x	3.6	x	41.38	x	0.63	x	0.1	=	6.5	(75)
Northeast 0.9x 0.77	x	3.6	x	67.96	x	0.63	x	0.1	=	10.68	(75)
Northeast 0.9x 0.77	x	3.6	x	91.35	x	0.63	x	0.1	=	14.36	(75)
Northeast 0.9x 0.77	x	3.6	x	97.38	x	0.63	x	0.1	=	15.31	(75)
Northeast 0.9x 0.77	x	3.6	x	91.1	x	0.63	x	0.1	=	14.32	(75)
Northeast 0.9x 0.77	x	3.6	x	72.63	x	0.63	x	0.1	=	11.41	(75)
Northeast 0.9x 0.77	x	3.6	x	50.42	x	0.63	x	0.1	=	7.92	(75)
Northeast 0.9x 0.77	x	3.6	x	28.07	x	0.63	x	0.1	=	4.41	(75)
Northeast 0.9x 0.77	x	3.6	x	14.2	x	0.63	x	0.1	=	2.23	(75)
Northeast 0.9x 0.77	x	3.6	x	9.21	x	0.63	x	0.1	=	1.45	(75)
Southwest _{0.9x} 0.77	x	2.7	x	36.79		0.63	x	0.1	=	4.34	(79)
Southwest _{0.9x} 0.77	x	2.7	x	62.67		0.63	x	0.1	=	7.39	(79)
Southwest _{0.9x} 0.77	x	2.7	x	85.75		0.63	x	0.1	=	10.11	(79)
Southwest0.9x 0.77	x	2.7	×	106.25		0.63	х	0.1	=	12.52	(79)
Southwest <mark>0.9x</mark> 0.77	x	2.7	x	119.01		0.63	x	0.1	=	14.03	(79)
Southwest _{0.9x} 0.77	x	2.7	x	118.15		0.63	x	0.1	=	13.93	(79)
Southwest _{0.9x} 0.77	x	2.7	x	113.91		0.63	x	0.1	=	13.43	(79)
Southwest _{0.9x} 0.77	x	2.7	x	104.39		0.63	x	0.1	=	12.31	(79)
Southwest _{0.9x} 0.77	x	2.7	x	92.85		0.63	x	0.1	=	10.95	(79)
Southwest0.9x 0.77	x	2.7	x	69.27		0.63	x	0.1	=	8.17	(79)
Southwest _{0.9x} 0.77	x	2.7	x	44.07		0.63	x	0.1	=	5.2	(79)
Southwest _{0.9x} 0.77	x	2.7	x	31.49		0.63	x	0.1	=	3.71	(79)
West 0.9x 0.77	x	4.94	x	19.64	x	0.63	x	0.1	=	4.24	(80)
West 0.9x 0.77	x	4.94	x	38.42	x	0.63	x	0.1	=	8.29	(80)
West 0.9x 0.77	x	4.94	x	63.27	x	0.63	x	0.1	=	13.65	(80)
West 0.9x 0.77	x	4.94	x	92.28	x	0.63	x	0.1	=	19.9	(80)
West 0.9x 0.77	x	4.94	x	113.09	x	0.63	x	0.1	=	24.39	(80)
West 0.9x 0.77	x	4.94	x	115.77	x	0.63	x	0.1	=	24.97	(80)
West 0.9x 0.77	x	4.94	x	110.22	x	0.63	x	0.1	=	23.77	(80)
West 0.9x 0.77	x	4.94	x	94.68	x	0.63	x	0.1	=	20.42	(80)
West 0.9x 0.77	x	4.94	x	73.59	x	0.63	x	0.1	=	15.87	(80)
West 0.9x 0.77	x	4.94	x	45.59	x	0.63	x	0.1	=	9.83	(80)
West 0.9x 0.77	x	4.94	x	24.49	x	0.63	x	0.1	=	5.28	(80)
West 0.9x 0.77	x	4.94	x	16.15	x	0.63	x	0.1	=	3.48	(80)
Northwest 0.9x 0.77	x	7.2	x	11.28	x	0.63	x	0.1	=	3.55	(81)
Northwest 0.9x 0.77	x	7.2	x	22.97	x	0.63	x	0.1	=	7.22	(81)
Northwest 0.9x 0.77	x	7.2	x	41.38	x	0.63	x	0.1	=	13.01	(81)

			-									_
Northwest 0.9x 0.77	X	7.2	X	6	57.96	×	0.63	×	0.1	=	21.36	(81)
Northwest 0.9x 0.77	x	7.2	x	g	1.35	×	0.63	×	0.1	=	28.71	(81)
Northwest 0.9x 0.77	x	7.2	x	g	7.38	×	0.63	x	0.1	=	30.61	(81)
Northwest 0.9x 0.77	x	7.2	x	9	91.1	x [0.63	x	0.1	=	28.64	(81)
Northwest 0.9x 0.77	x	7.2	x	7	2.63	x	0.63	x	0.1	=	22.83	(81)
Northwest 0.9x 0.77	x	7.2	x	5	0.42	x	0.63	x	0.1	=	15.85	(81)
Northwest 0.9x 0.77	x	7.2	×	2	8.07] x [0.63	x	0.1	=	8.82	(81)
Northwest 0.9x 0.77	x	7.2	x		14.2	x [0.63	x [0.1	=	4.46	(81)
Northwest 0.9x 0.77	x	7.2	x		9.21	x [0.63	x	0.1	=	2.9	(81)
Solar gains in watts, calcula	ted	for each mor	ith			(83)m	= Sum(74)m	(82)m				
(83)m= 13.89 26.5 43.2	7	64.47 81.49	9	84.81	80.15	66.9	97 50.59	31.23	17.17	11.54		(83)
Total gains - internal and so	blar	(84)m = (73)r	n + ((83)m	, watts							
(84)m= 402.99 412.79 415.	31	414.17 408.8	3 3	390.99	373.05	366.	48 362.08	365.27	376.69	389.88		(84)
7. Mean internal temperatu	ire ((heating seas	on)									
Temperature during heatin	g p	eriods in the I	iving	area	from Tak	ole 9,	Th1 (°C)				21	(85)
Utilisation factor for gains f	or li	iving area, h1	,m (s	see Ta	ble 9a)							
Jan Feb Ma	ar	Apr Ma	y	Jun	Jul	Αι	ug Sep	Oct	Nov	Dec		
(86)m= 1 1 0.9	э	0.98 0.9		0.7	0.51	0.5	4 0.8	0.97	1	1		(86)
Mean internal temperature	in I	iving area T1	(follo	ow ste	ps 3 to 7	7 in T	able 9c)					
(87)m= 20.51 20.57 20.6	-	20.82 20.94	<u>`</u>	20.99	21	21	· · · ·	20.86	20.67	20.5		(87)
Temperature during heatin		oriode in rest	of du	volling	from To		Th2 (PC)	1				
(88)m= 20.44 20.44 20.4		20.45 20.4 ⁴		20.46	20.46	20.4		20.45	20.45	20.44		(88)
	-											
Utilisation factor for gains f ((89) m= 1 1 0.99	_	1		2,m (se 0.65	0.45	<u>, </u>	0 0 75	0.00	0.00			(89)
(89)m= 1 1 0.99	9	0.97 0.87		0.05	0.45	0.4	8 0.75	0.96	0.99	1		(89)
Mean internal temperature	_	1			i	eps 3	to 7 in Tab	<u>,</u>			I	
(90)m= 19.78 19.86 20.0)1	20.23 20.39	9	20.46	20.46	20.4		20.28	20.01	19.77		(90)
							1	fLA = Livi	ng area ÷ (4) =	0.34	(91)
Mean internal temperature	(fo	r the whole du	vellir	ng) = fl	LA × T1	+ (1 -	– fLA) × T2					
(92)m= 20.03 20.1 20.2	:3	20.43 20.58	3	20.64	20.64	20.6	65 20.63	20.48	20.23	20.02		(92)
Apply adjustment to the me	ean	internal temp	erat	ure fro	m Table	e 4e, v	where appro	opriate				
(93)m= 20.03 20.1 20.2	3	20.43 20.58	3	20.64	20.64	20.6	65 20.63	20.48	20.23	20.02		(93)
8. Space heating requirem												
Set Ti to the mean internal		•		d at ste	ep 11 of	Table	e 9b, so tha	t Ti,m=	(76)m an	d re-calc	ulate	
the utilisation factor for gai	- 1			lun	Jul	۸.	ıg Sep	Oct	Nov	Dee		
Jan Feb Ma Utilisation factor for gains,		Apr Ma	У	Jun	Jui	Αι	ig Sep	Oct	Nov	Dec		
$(94)m = \begin{bmatrix} 1 & 1 & 0.99 \end{bmatrix}$	-	0.97 0.88		0.67	0.47	0.5	5 0.77	0.96	0.99	1		(94)
Useful gains, hmGm , W =					••••							
(95)m= 401.87 410.99 411.	<u> </u>	400.85 360.4	7 2	260.67	175.98	184.	04 278.4	351.1	374.09	389.04		(95)
Monthly average external t	em	perature from	Tab	le 8	1	I		1	1	1	I	
(96)m= 4.3 4.9 6.5		8.9 11.7	1	14.6	16.6	16.	4 14.1	10.6	7.1	4.2		(96)
Heat loss rate for mean int	erna	al temperatur	e, Ln	n , W =	=[(39)m	x [(93	3)m– (96)m]				
(97)m= 714.73 688.41 620.	02	512.02 393.0	8 2	262.98	176.08	184.	21 286.14	437.25	585.2	709.52		(97)

Space (98)m=	e heatin 232.77	g require 186.43	ement fo 155.27	or each n 80.04	10nth, k	Wh/mon	th = 0.02	24 x [(97	')m – (95 0	5)m] x (4	1)m 152	238.43]	
(50)11-	202.11	100.43	100.27	00.04	27.21			, î	al per year	_			1133.31	(98)
Space	e heatin	g require	ement in	kWh/m²	/year								14.76	(99)
9b. En	ergy rec	luiremer	nts – Cor	mmunity	heating	scheme	e							
							ater heat				unity sc	heme.		
	-			mmunity		-	heating (1) 0 11 11	one			0	(301)
						· ·	,	allows for	CUP and	un to four	othor hoo	sources; t	1	(302)
		•	•				r stations.			up 10 10ui	ouner near	sources, u		
Fractio	n of hea	at from C	Commun	ity heat	pump								1	(303a)
Fractio	n of tota	al space	heat fro	m Comn	nunity h	eat pum	р			(3	802) x (303	8a) =	1	(304a)
Factor	for cont	rol and o	charging	method	(Table	4c(3)) fo	or commu	unity hea	ating sys	tem			1	(305)
Distrib	ution los	s factor	(Table 1	2c) for c	commun	ity heati	ng syste	m					1	(306)
-	heatin g I space	-	requiren	nent									kWh/yea 1133.31	ır
Spa <mark>ce</mark>	heat fro	m Com	munity h	eat pum	р				(98) x (3	04a) x (30	5) x (306)	=	1133.31	(307a)
Efficier	ncy of se	econdary	y/supple	mentary	heating	system	in % (fro	om Table	e 4a or A	ppendi	E)		0	(308
Space	heating	require	ment fro	m secon	dary/su	pplemen	ntary syst	tem	(98) x (3	01) x 100	÷ (308) =		0	(309)
Water	heating													
		-	equirem	ent									2062.88	
			ty schen nunity he	ne: eat pump	þ				(64) x (3	03a) x (30	5) x (306)	=	2062.88	(310a)
Electric	city used	d for hea	at distribu	ution				0.01	× [(307a)	(307e) -	⊦ (310a)…	(310e)] =	31.96	(313)
Cooling	g Syster	m Energ	y Efficie	ncy Rati	0								0	(314)
Space	cooling	(if there	is a fixe	d coolin	g syster	n, if not e	enter 0)		= (107) ÷	- (314) =			0	(315)
				within dv ced, extra): put from	outside					173.81	(330a)
warm a	air heati	ng syste	m fans										0	(330b)
pump f	or solar	water h	eating										0	(330g)
Total e	lectricity	/ for the	above, l	kWh/yea	r				=(330a)	+ (330b) +	- (330g) =		173.81	(331)
Energy	/ for ligh	ting (cal	culated i	in Apper	ndix L)								459.05	(332)
Electric	city gene	erated b	y PVs (A	Appendix	: M) (ne	gative qu	uantity)						-664.99	(333)
Electric	city gene	erated b	y wind tu	urbine (A	ppendi	(ne	gative qu	antity)					0	(334)
12b. C	O2 Emi	ssions –	Commu	unity hea	ting sch	ieme								
									ergy ′h/year		missior g CO2/k		Emissions kg CO2/year	
			es of spa ce 1 (%)	ace and v	water he			g two fuel	s repeat (3	63) to (36	6) for the s	second fue	364	(367a)

CO2 associated with heat source 1	[(307b)+(310b)] x 100 ÷ (367b) x	0.52] =	455.72	(367)
Electrical energy for heat distribution		[(313) x	0.52	=	16.59	(372)
Total CO2 associated with community	systems	(363)(366) + (368)(3	372)	=	472.31	(373)
CO2 associated with space heating (se	condary)	(309) x	0	=	0	(374)
CO2 associated with water from immer	sion heater or instanta	neous heater (312) x	0.52	=	0	(375)
Total CO2 associated with space and w	vater heating	(373) + (374) + (375) =			472.31	(376)
CO2 associated with electricity for pum	ps and fans within dwe	lling (331)) x	0.52	=	90.21	(378)
CO2 associated with electricity for light	ing	(332))) x	0.52	=	238.25	(379)
Energy saving/generation technologies	(333) to (334) as appli	cable	0.52 X 0.	01 – 🗖		
Item 1			0.52 X 0.		-345.13	(380)
Total CO2, kg/year	sum of (376)(382) =				455.63	(383)
Dwelling CO2 Emission Rate	(383) ÷ (4) =				5.93	(384)
El rating (section 14)					94.99	(385)

Assessor Name: Strom FSAP 2012 Strom Automation Software Yasion: Version: Version: 1.04.23 Matter Strom 1 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON 1.04.23 Coronal floor 1 Bed Flat, 219-223 Coldharbour Lane, Loughborough Junction, LONDON 1.02.25 (2) 1.02.25 (3) Coronal floor 1.01 51.7 (4) (3)				User De	etails:								
Address : 1 Bed Fait, 219-223 Coldharbour Lane, Loughborough Junction, LONDON I. Vertial dwelling dimensions: Area(m ²) Av. Height(m) Volume(m ²) Ground floor 517 (1a) x 2.5 (2a) a (2g) 25 (3a) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 517 (4) (a)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c)+(3c		Stroma FSAP 201		;	Softwa	re Ver			Versio	n: 1.0.4.23			
I. Overall dwelling dimensions: Area(m?) Av. Height(m) Volume(m?) Ground floor 51.7 (1a) x Z.5 (2a) = 129.25 (3a) Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n) 51.7 (4) 129.25 (5) Dwelling volume (3a)+(3b)+(3c)+(3d)+(3e)+(3n) = 129.25 (5) Iterating secondary other total m³ per hour Number of chimneys 0 + 0 = 0 x40 = 0 (6a) Number of pan flues 0 + 0 = 0 x40 = 0 (6a) Number of pasive vents 0 + 0 = 0 x40 = 0 (7a) Number of flueless gas fires 0 x40 = 0 (7a) 0 (7a) Number of storeys in the dwelling (ns) 0 x40 = 0 (7a) Additional infituation: 0.2 for steel or timber frame or 0.35 for masonry construction (1b) 0 (10) If a presentation set has been camed out or is instabled. proceed to (17) otherwase continuue from (3) is (16) 0		4 Ded Elet 040 000					uh lunat	ion ION					
Area(m ²)Av. Height(m)Volume(m ³)Ground floor51.7(a)2.5(ca)129.25(s)Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)51.7(a)(a)+(a)+(a)+(a)+(a)+(a)+(a)+(a)+(a)+(a)+			Coldnarb	our Lar	ne, Loug	poroug	gn Junct	ion, LOP	IDON				
Dwelling volume $(3a)+(3b)+(3c)+(3c)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d)+(3d$				-	· ,	(1a) x			(2a) =		-		
Number of chimneys main heating secondary other total m³ per hour Number of open flues 0 <t< td=""><td>Total floor area TFA = (1</td><td>a)+(1b)+(1c)+(1d)+(1e</td><td>e)+(1n)</td><td>5</td><td>1.7</td><td>(4)</td><td></td><td></td><td></td><td></td><td></td></t<>	Total floor area TFA = (1	a)+(1b)+(1c)+(1d)+(1e	e)+(1n)	5	1.7	(4)							
main heating heatingsecondary heatingothertotalm² per hourNumber of chimneys0+0=0x40 =0(6a)Number of open flues0+0=0x20 =0(6b)Number of intermittent fans0x10 =077a)Number of passive vents0x10 =077b)Number of passive vents0x40 =077c)Number of titleless gas fires0x40 =077c)Infiltration due to chimneys, flues and fans =(66)+(6b)+(7a)+(7b)+(7b) =0+ (6) =0(6)If a pessurisation test has blen camed out or is intended, proceed to (77), otherwise continue from (9) to (76)0(9)(10)Structural infiltration(19)+1(b,1) =0(10)(10)(10)Structural infiltration0.25 for steel or timber frame or 0.35 for masonry construction0(12)If buspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)Percentage of windows and doors draught stripped0(14)Window infiltration rate(20) = 10.075 (19) =0Air permeability value, e\$0, expressed in cubic metres per hour per square metre of envelope area2(17)Air permeability value, e\$0, expressed in cubic metres per hour per square metre of envelope area2(17)Air permeability value, e\$0, expressed in cubic metres per hour per square metre of envelope area2(17)Air permeability value, a													
Number of chimneys 0 1 0 0 1 0 0 <t< td=""><td>2. Ventilation rate:</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	2. Ventilation rate:												
Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b) Number of open flues 0 + 0 + 0 = 0 × 20 = 0 (6b) Number of intermittent fans 0 × 10 = 0 (7a) Number of passive vents 0 × 10 = 0 (7b) Number of passive vents 0 × 10 = 0 (7c) Number of flueless gas fires 0 × 40 = 0 (7c) Number of flueless gas fires 0 × 40 = 0 (7c) Number of storeys in the dwelling (ns) Additional infiltration 0 (9) Additional infiltration 0 (9) Structural infiltration 0 (25 for steel or timber frame or 0.35 for masonry construction If supended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If supended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 Percentage of windows and doors draught stripped Window infiltration 0 (25 - $[0.2 \times (14) + 100]$ = 0 (15) Infiltration rate $(6) + (10) + (11) + (12) + (13) + (15) =$ 0 (16) Air permeability value, ep0, expressed in cubic metres per hour per square metre of envelope area 2 (17) Percentage of windows and bors draught stripped Window infiltration $(20) = 1 + [0.075 \times (19)] =$ (-16) Air permeability value, ep0, expressed in cubic metres per hour per square metre of envelope area 2 (17) Air permeability value, ep0, expressed in cubic metres per hour per square metre of envelope area 2 (17) Pienter factor $(20) = 1 + [0.075 \times (19)] =$ 0.08 (21) Infiltration rate incorporating shelter factor $(21) = (10.075 \times (19)] =$ 0.78 (20) Infiltration rate modified for monthly wind speed Monthy average wind speed from Table 7 (22)m 5 1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m $= (22)m \div 4$	Number of chimpons	heating h	neating			ı _ r		×/	IO -	-	-		
Number of intermittent fans0 $x10 =$ 0(7a)Number of passive vents0 $x10 =$ 0(7c)Number of flueless gas fires0 $x40 =$ 0(7c)Air changes per hourInfiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7c)=$ 0 $+(5) =$ 0(8)If pressurisation test has been carred out or is intended, proceed to (17), otherwise continue from (9) to (16)Number of storeys in the dwelling (ns)Additional infiltration(19)-1):0.1 =0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both ypes of will are present, use the value corresponding to the greater well area (after deucting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 0O(14)Window infiltration0.25 - [0.2 x (14) + 100] =O(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaO(17)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaAir permeability value, applies if a pressurisation test has been done or a degree air permeability is being usedNumber of sides sheltered <t< td=""><td></td><td></td><td>-</td><td>¦</td><td></td><td>. L</td><td></td><td></td><td></td><td></td><td></td></t<>			-	¦		. L							
Number of flueless gas fires $ \begin{array}{c} 0 \\ \text{Number of flueless gas fires \end{array} $ $ \begin{array}{c} 0 \\ 0 \\ 0 \end{array} $ $ \begin{array}{c} 0 \\$	·		0		0	J L T	-	x 1	0 =				
Number of flueless gas fires $0 \times 40 = 0$ (7c) Air changes per hour Infiltration due to chimneys, flues and fans = (\$e)+(6b)+(7a)+(7c) = 0 - (9) = 0 (8) If a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (2) to (16) Number of storeys in the dwelling (ns) Additional infiltration (0.5) for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0 0 (13) Percentage of windows and doors draught stripped Window infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value, q50, expressed in cubic metres per air permeability is being used Number of sides sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 0.78 (20) Infiltration rate modified for monthly wind speed Lan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 (2)m 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22m ÷ 4)	Number of passive vents	5					0	x 1	0 =	0	」 ┃(7b)		
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0 + (5) = 0$ It a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76) Number of storeys in the dwelling (ns) Additional infiltration (9) to (76) Additional infiltration (9) to (76) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.2, get enter 0 Percentage of windows and doors draught stripped Window infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 0.78 (20) Infiltration rate modified for monthly wind speed Infiltration rate modified for monthly wind speed Infiltration rate modified for monthly wind speed Monthly average wind speed from Table 7 (22)me 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	·						-	x 4	+0 =	0			
Infiltration due to chimneys, flues and fans = $(6a)+(6b)+(7a)+(7b)+(7c) = 0 + (5) = 0$ It a pressurisation test has been carried out or is intended, proceed to (17), otherwise continue from (9) to (76) Number of storeys in the dwelling (ns) Additional infiltration (9) Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 0.78 Infiltration rate modified for monthly wind speed Infiltration rate modified for monthly wind speed Infiltration rate modified for monthly wind speed Monthly average wind speed from Table 7 (22)me 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4													
Number of storeys in the dwelling (ns) Additional infiltration 0 0 0 Additional infiltration0.25 for steel or timber frame or 0.35 for masonry construction if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 0 0 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 0 (12) If no draught lobby, enter 0.05, else enter 0 0 (13) Percentage of windows and doors draught stripped 0 (14) Window infiltration $0.25 - [0.2 \times (14) + 100] =$ 0 Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0 Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 2 If based on air permeability value, then $(18) = [(17) + 20] + (8)$, otherwise $(18) = (16)$ 0.1 Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used 3 Number of sides sheltered 3 (19) Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.08 Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.08 Infiltration rate modified for monthly wind speed 3 3.7 4 Monthly average wind speed from Table 7 $(22) m = 5.1$ 5 4.9 $(22) m = 5.1$ 5 4.9 4.4 3 3.8 3.7 4 4.3 4.5 4.7	Infiltration due to chimne	ys, flues and fans = (6	a)+(6b)+(7a)) +(7 b)+(7	c) =	Г	0				-		
Additional infiltration((9)-1)x0.1 =0(10)Structural infiltration: 0.25 for steel or timber frame or 0.35 for masonry constructionif both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.350(11)If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00(12)If no draught lobby, enter 0.05, else enter 00(13)Percentage of windows and doors draught stripped0(14)Window infiltration0.25 - [0.2 × (14) + 100] =0Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area2If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16)0.1Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used1(9)Number of sides sheltered3(19)Shelter factor(20) = 1 - [0.075 × (19)] =0.08Infiltration rate incorporating shelter factor(21) = (18) × (20) =0.08JanFebMarAprMayJanFebMarAprMayMonthly average wind speed from Table 7(22)m =5.15(22)m =5.154.94.44.33.83.744.34.54.7			ed, proceed	to (17), o	therwise c	ontinue fro	om (9) to ((16)			-		
if both types of wall are present, use the value corresponding to the greater wall area (after deducting areas of openings); if equal user 0.35 If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0 If no draught lobby, enter 0.05, else enter 0 Percentage of windows and doors draught stripped Window infiltration 0.25 · [0.2 x (14) + 100] = 0 (14) Window infiltration 0.25 · [0.2 x (14) + 100] = 0 (15) Infiltration rate (8) + (10) + (11) + (12) + (13) + (15) = 0 (16) Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 2 (17) If based on air permeability value, then (18) = [(17) + 20]+(8), otherwise (18) = (16) <i>Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used</i> Number of sides sheltered Shelter factor (20) = 1 - [0.075 x (19)] = 1nfiltration rate modified for monthly wind speed <u>Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec</u> Monthly average wind speed from Table 7 (22)me <u>5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7</u> Wind Factor (22a)m = (22)m ÷ 4		he dw <mark>elling</mark> (ns)						[(9)-	1]x0.1 =		-		
deducting areas of openings); if equal user 0.35If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 00If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration0.25 - [0.2 x (14) + 100] =Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area2If based on air permeability value, then $(18) = [(17) + 20] + (8)$, otherwise $(18) = (16)$ 0.1Air permeability value, applies if a pressurisation test has been done or a degree air permeability is being used3Number of sides sheltered3(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.08Infiltration rate modified for monthly wind speed014JanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7220m =(22m =5.154.94.44.33.83.7Wind Factor (22a)m = (22)m ÷ 44.4	Structural infiltration: 0	.25 for steel or timber	frame or 0).35 for	masonr	y constr	uction			0	- (11)		
If suspended wooden floor, enter 0.2 (unsealed) or 0.1 (sealed), else enter 0If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 \cdot [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area2If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.1Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used3Number of sides sheltered3Shelter factor(20) = 1 - [0.075 \times (19)] =Infiltration rate modified for monthly wind speed0.08JanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7(22)m =5.154.94.44.33.83.744.34.34.54.7			ponding to t	he greate	er wall area	a (after					-		
If no draught lobby, enter 0.05, else enter 00Percentage of windows and doors draught stripped0Window infiltration $0.25 - [0.2 \times (14) \div 100] =$ Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area2If based on air permeability value, then (18) = [(17) $\div 20]$ +(8), otherwise (18) = (16)0.1Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used3Number of sides sheltered3Shelter factor(20) = 1 - [0.075 x (19)] =Infiltration rate modified for monthly wind speed0.08JanFebMarAprMayJunJunAugSepOctNovDecMonthly average wind speed from Table 7(22)m =5.154.94.44.33.83.744.34.34.54.7			led) or 0.1	(sealed	d), else	enter 0				0] (12)		
Window infiltration $0.25 - [0.2 \times (14) + 100] =$ 0 (15)Infiltration rate $(8) + (10) + (11) + (12) + (13) + (15) =$ 0 (16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area 2 (17)If based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.1 (18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used 0.1 (18)Number of sides sheltered 3 (19)Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.08 (21)Infiltration rate modified for monthly wind speed $\boxed{20}$ Infiltration rate modified for Table 7 (22) m = 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	If no draught lobby, en	ter 0.05, else enter 0	,	,	,,						4		
Infiltration rate(10)Infiltration rate(8) + (10) + (11) + (12) + (13) + (15) =0(16)Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope area2(17)If based on air permeability value, then $(18) = [(17) \div 20]+(8)$, otherwise $(18) = (16)$ 0.1(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.1(18)Number of sides sheltered3(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.78(20)Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.08(21)Infiltration rate modified for monthly wind speed 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m $\div 4$ 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7	Percentage of window	s and doors draught st	tripped							0	(14)		
Air permeability value, q50, expressed in cubic metres per hour per square metre of envelope areaIf based on air permeability value, then $(18) = [(17) \div 20] + (8)$, otherwise $(18) = (16)$ 0.1(18)Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used0.1(18)Number of sides sheltered3(19)Shelter factor(20) = 1 - [0.075 x (19)] =0.78Infiltration rate incorporating shelter factor(21) = (18) x (20) =0.08Infiltration rate modified for monthly wind speed0.10.08Monthly average wind speed from Table 754.94.4Wind Factor (22a)m = (22)m ÷ 44.33.83.83.744.34.54.7	Window infiltration			(0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)		
If based on air permeability value, then $(18) = [(17) \div 20]+(8)$, otherwise $(18) = (16)$ Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor (20) = 1 - [0.075 x (19)] = Infiltration rate incorporating shelter factor (21) = (18) x (20) = Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 (22)m= 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4	Infiltration rate			((8) + (10) -	+ (11) + (1	2) + (13) -	+ (15) =		0	(16)		
Air permeability value applies if a pressurisation test has been done or a degree air permeability is being used Number of sides sheltered Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7 (22)m = 5.1 5 4.9 4.4 4.3 3.8 3.8 3.7 4 4.3 4.5 4.7 Wind Factor $(22a)m = (22)m \div 4$		• • •		•	•	•	etre of e	nvelope	area	2	(17)		
Number of sides sheltered3Shelter factor $(20) = 1 - [0.075 \times (19)] =$ Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ Infiltration rate modified for monthly wind speed 0.08 JanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7(22)m= 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.3 4.5 4.7	•	•								0.1	(18)		
Shelter factor $(20) = 1 - [0.075 \times (19)] =$ 0.78 (20) Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.08 (21) Infiltration rate modified for monthly wind speed 0.08 (21) Infiltration rate modified for monthly wind speedMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7 $(22)m=$ 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7 \div 4\div 4\div 4\div 4			s been done	or a degi	ree air per	meability i	is being us	sed					
Infiltration rate incorporating shelter factor $(21) = (18) \times (20) =$ 0.08 (21) Infiltration rate modified for monthly wind speed $\overline{0.08}$ (21) $\overline{0.08}$ (21) Infiltration rate modified for monthly wind speed $\overline{140}$ $\overline{140}$ $\overline{140}$ $\overline{120}$ $\overline{0.08}$ (21) Infiltration rate modified for monthly wind speed $\overline{140}$ $\overline{140}$ $\overline{140}$ $\overline{140}$ $\overline{120}$ $\overline{100}$		eu		((20) = 1 - [0.075 x (1	9)] =				-		
Infiltration rate modified for monthly wind speed Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Monthly average wind speed from Table 7		ting shelter factor									4		
JanFebMarAprMayJunJulAugSepOctNovDecMonthly average wind speed from Table 7 $(22)m=$ 5.1 5 4.9 4.4 4.3 3.8 3.7 4 4.3 4.5 4.7 Wind Factor (22a)m = (22)m ÷ 4		-	d							0.00	J(=.)		
$(22)m = \begin{bmatrix} 5.1 & 5 & 4.9 & 4.4 & 4.3 & 3.8 & 3.8 & 3.7 & 4 & 4.3 & 4.5 & 4.7 \end{bmatrix}$ Wind Factor (22a)m = (22)m ÷ 4			<u> </u>	Jul	Aug	Sep	Oct	Nov	Dec				
Wind Factor (22a)m = (22)m \div 4	Monthly average wind sp	beed from Table 7											
	<u> </u>	<u> </u>	3.8	3.8	3.7	4	4.3	4.5	4.7				
	Wind Factor $(22a)m = (2)$	2)m ÷ 4											
		·	0.95	0.95	0.92	1	1.08	1.12	1.18				

Adjust	ed infiltr	ation rat	e (allowi	ng for sl	nelter an	d wind s	peed) =	(21a) x	(22a)m	-	-			
.	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(23a)
				endix N. (2	23b) = (23a) × Fmv (e	equation (N	N5)) . othei	rwise (23b) = (23a)			0.5	(23a)
					allowing for					, (,			73.1	(23c)
			-	-	with hea					2h)m + (23h) x [′	1 – (23c)		(200)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(24a)
		d mech	I anical ve	Intilation	without	heat rec	L coverv (N	I /\\/) (24b	l = (22)	l 2b)m + (;	1 23h)			
(24b)m=		0		0	0	0	0	0	0	0	0	0		(24b)
		ouse ex	ract ver	tilation o	or positiv	re input v	ventilatio	n from c	utside					
,					c) = (23b	•				5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
d) If	natural	ventilatio	on or wh	ole hous	se positiv	e input	ventilatio	on from I	oft					
	<u> </u>	n = 1, th	en (24d)	m = (22	b)m othe	rwise (2	, 	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
				<u>``</u>	i) or (24b	, ,	, <u>,</u>	<i>,</i>	· ,	r	1	1	I	()
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at l <mark>osse</mark>	s and he	eat loss	oaramet	er:									
		Gros area		Openin	lgs	Net Ar A ,r		U-valı W/m2		A X U (W/I		k-value		A X k kJ/K
Windo	ws Type		(111-)			13.5		[1/(0.73)+		9.58		NJ/111-1	`	(27)
	ws Type							[1/(0.73)+	Ļ	2.07	H			(27)
Walls				40.5		2.925				_	H r			
		29	,	13.5	=	15.5		0.15		2.33	닉 ¦			(29)
Walls		5		2.92	<u></u>	2.08	×	0.15		0.31	╡┟		\dashv	(29)
Walls		18		0		18	×	0.15	=	2.7				(29)
	area of e	iements	, m²			52								(31)
Party						44.25	5 X	0	=	0	L		\exists	(32)
Party f						51.7					Ĺ		$_$ $_$	(32a)
Party	Ũ					51.7					Ĺ			(32b)
Interna	al wall **					77								(32c)
					indow U-va Is and part		ated using	formula 1.	/[(1/U-valu	ie)+0.04] a	as given in	paragraph	1 3.2	
Fabric	heat los	s, W/K	= S (A x	U)				(26)(30)	+ (32) =				16.99	(33)
Heat c	apacity	Cm = S((Axk)						((28)	.(30) + (32	2) + (32a).	(32e) =	13882.3	(34)
Therm	al mass	parame	ter (TM	- Cm -	+ TFA) in	ı kJ/m²K			Indica	tive Value	: Medium		250	(35)
	ign assess used inste				constructi	ion are not	t known pr	ecisely the	e indicative	values of	TMP in Ta	able 1f		
					using Ap	pendix ł	<						7.96	(36)
	-		,		= 0.05 x (3	-	-						1.30	
	abric he			. ,					(33) +	(36) =			24.95	(37)
Ventila	ation hea	at loss ca	alculated	monthl	у				(38)m	= 0.33 × (25)m x (5)			
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		

(38)m=	9.95	9.87	9.79	9.37	9.29	8.88	8.88	8.79	9.04	9.29	9.46	9.62		(38)
Heat tra	ansfer o	coefficie	nt, W/K						(39)m	= (37) + (3	38)m			
(39)m=	34.9	34.82	34.73	34.32	34.24	33.82	33.82	33.74	33.99	34.24	34.4	34.57		
Heat la		motor (l	יאי (סור	/m2k						Average =		12 /12=	34.3	(39)
(40)m=	0.68	0.67	HLP), W/	0.66	0.66	0.65	0.65	0.65	0.66	= (39)m ÷ 0.66	(4) 0.67	0.67	l	
(40)11-	0.00	0.07	0.07	0.00	0.00	0.00	0.00	0.00		Average =			0.66	(40)
Numbe	er of day	vs in mo	nth (Tab	le 1a)			-							
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
4. Wa	ter heat	ting ene	rgy requi	irement:								kWh/ye	ear:	
		ipancy,		[4 over	(0 0000	40 v /T	- 42.0		040 x (74	I	(42)
	A > 13.9 A £ 13.9		+ 1.76 x	i [1 - exp	(-0.0003	49 X (11	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	9)			
			ater usag									.53		(43)
		-	hot water person per			-	-	to achieve	a water us	se target o	f			
	Jan	Feb	, Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate			r day for ea					U U	Oep	001	1100			
(44)m=	<mark>8</mark> 3.08	80.06	77.04	74.02	71	67.98	67.98	71	74.02	77.04	80.06	8 3.08		
										Total = Su	m(44) ₁₁₂ =	_	906.36	(44)
Energy o	content of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x E)Tm / 3600) kWh/mor	oth (see Ta	bles 1b, 1	c, 1d)		
(45)m=	123.21	107.76	111.2	96.95	93.02	80.27	74.38	85.36	86.37	100.66	109.88	119.32		
lf instant	aneous w	ater heati	ng at point	of use (no	hot water	storage)	enter () in	hoxes (46		Tota <mark>l = Su</mark>	m(45) ₁₁₂ =	-	1188.38	(45)
(46)m=	18.48	16.16	16.68	14.54	13.95	12.04	11.16	12.8	12.96	15.1	16.48	17.9		(46)
· · ·	storage		10.00	14.04	13.95	12.04	11.10	12.0	12.90	15.1	10.40	17.9		(40)
Storage	e volum	e (litres)) includir	ng any so	olar or W	/WHRS	storage	within sa	ame ves	sel		180		(47)
If comr	nunity h	eating a	and no ta	nk in dw	velling, e	nter 110	litres in	(47)						
			hot wate	er (this ir	icludes i	nstantar	neous co	mbi boil	ers) ente	er '0' in (47)			
	storage		eclared I	oss facto	or is kno	wn (kWł	n/dav).					0		(48)
,			m Table			(" ddy / .					0		(49)
			storage		ear			(48) x (49)) =			80		(10)
			eclared of	-		or is not								()
		-	factor fr		e 2 (kW	h/litre/da	ıy)				0.	01		(51)
	•	leating s from Ta	ee secti ble 2a	on 4.3								07		(52)
			m Table	2b								87 .6		(52)
			[.] storage		ear			(47) x (51)	x (52) x (53) =		97		(54)
		(54) in (5	-	, ,								97		(55)
Water	storage	loss cal	culated f	for each	month			((56)m = (55) × (41)	m				
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)
If cylinde	er contains	s dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)

•	Primary circuit loss (annual) from Table 3 O Primary circuit loss calculated for each month (59)m = (58) ÷ 365 × (41)m												
(modified b					· ·	. ,	• • •		r thermo	stat)			
(59)m= 23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi loss ca	alculated	for each	month	(61)m =	(60) ÷ 3	65 x (41)m						
(61)m= 0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total heat req	uired for	water h	eating ca	alculated	l for eac	h month	(62)m =	• 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (6 ⁻	1)m
(62)m= 176.56	155.95	164.55	148.58	146.38	131.9	127.74	138.71	138.01	154.01	161.51	172.68		(62)
Solar DHW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	y) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add additiona	al lines if	FGHRS	and/or \	WWHRS	applies	, see Ap	pendix (G)		-	-		
(63)m= 0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output from w	vater hea	ater											
(64)m= 176.56	155.95	164.55	148.58	146.38	131.9	127.74	138.71	138.01	154.01	161.51	172.68		
							Out	out from wa	ater heate	r (annual)₁	12	1816.58	(64)
Heat gains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.85	× (45)m	ı + (61)n	n] + 0.8 >	k [(46)m	+ (57)m	+ (59)m]	
(65)m= 83.65	74.38	79.66	73.54	73.61	68	67.42	71.06	70.03	76.15	77.84	82.36		(65)
include (57)	m in cal	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Internal g	ains (see	e Table {	5 and 5a):									
Met <mark>abolic</mark> gai	ns (Table	e 5), Wat	ts										
Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m= 87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	87.01	8 <mark>7.01</mark>	87.01	87.01		(66)
Ligh <mark>ting g</mark> ains	(calcula	ited in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5					
(67)m= 18.06	16.04	13.04	9.88	7.38	6.23	6.73	8.75	11.75	14.92	17.41	18.56		(67)
Appliances ga	ains (calc	culated in	n Appeno	dix L, eq	uation L	13 or L1	3a), also	o see Ta	ble 5				
(68)m= 151.65	153.22	149.26	140.81	130.16	120.14	113.45	111.88	115.84	124.28	134.94	144.96		(68)
Cooking gains	s (calcula	ated in A	ppendix	L, equa	tion L15	or L15a), also se	ee Table	5				
(69)m= 31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7	31.7		(69)
Pumps and fa	ins gains	(Table	5a)		-	-	-	-	-				
(70)m= 0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses e.g. e	vaporatio	on (nega	tive valu	es) (Tab	ole 5)	-							
(71)m= -69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61	-69.61		(71)
Water heating	, gains (1	Fable 5)	•		•		•	•	•				
(72)m= 112.43	110.69	107.07	102.14	98.94	94.44	90.61	95.52	97.26	102.36	108.11	110.7		(72)
Total interna	I gains =	-			(66))m + (67)n	• n + (68)m ·	+ (69)m + ((70)m + (7	1)m + (72)	m		
(73)m= 331.24	329.05	318.47	301.93	285.58	269.92	259.9	265.25	273.95	290.66	309.57	323.32		(73)
6. Solar gain	s:			•						•			
Solar gains are	calculated	using sola	r flux from	Table 6a	and assoc	iated equa	ations to co	onvert to th	ne applicat	ole orientat	ion.		
Orientation [.]	Arress F	Factor	Area		Fli	IY		a		FF		Gains	

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9x	0.77	x	2.92	x	11.28	×	0.63	x	0.1	=	1.44	(75)
Northeast 0.9x	0.77	x	2.92	×	22.97	×	0.63	×	0.1	=	2.93	(75)

											-			_		_
Northeast	0.9x 0.77	7	(2	.92	x	41	1.38	x	0.63		×	0.1	=		5.28	(75)
Northeast	0.9x 0.77	7)	2	.92	x	67	7.96	x	0.63		×	0.1	=	-	8.68	(75)
Northeast	0.9x 0.77	7)	(2	.92	x	91	1.35	x	0.63		× [0.1	=	-	11.67	(75)
Northeast	0.9x 0.77	7)	(2	.92	x	97	7.38	x	0.63		× [0.1	=	-	12.44	(75)
Northeast	0.9x 0.77	7	(2	.92	x	9	1.1	x	0.63		× [0.1	=	- [11.63	(75)
Northeast	0.9x 0.77	7)	2	.92	x	72	2.63	x	0.63		× [0.1	=	-	9.27	(75)
Northeast	0.9x 0.77	7)	2	.92	x	50).42	x	0.63		× [0.1	=	- [6.44	(75)
Northeast	0.9x 0.77	7)	2	.92	x	28	3.07	x	0.63		× [0.1	=	- [3.58	(75)
Northeast	0.9x 0.77	7)	2	.92	x	1.	4.2	x	0.63		× [0.1	=	-	1.81	(75)
Northeast	0.9x 0.77	7	2	.92	x	9	.21	×	0.63		× [0.1	=		1.18	(75)
Southwest	0.9x 0.77	7)	۲ ا	3.5	x	36	6.79]	0.63		× [0.1	=	-	21.69	(79)
Southwest	0.9x 0.77	7 >	۲ (3.5	x	62	2.67]	0.63		× [0.1	=		36.94	(79)
Southwest	0.9x 0.77	7 >	۲ (3.5	x	85	5.75]	0.63		× [0.1	=	-	50.54	(79)
Southwest	0.9x 0.77	7 >	۲ (3.5	x	10	6.25]	0.63		× [0.1	=	-	62.62	(79)
Southwest	0.9x 0.77	7)	۲ (3.5	x	11	9.01]	0.63		× [0.1	=	-	70.14	(79)
Southwest	0.9x 0.77	7)	۲ (3.5	x	11	8.15]	0.63		× [0.1	=	- [69.64	(79)
Southwest	0.9x 0.77	7)	۲ ا	3.5	x	11	3.91]	0.63		× [0.1	=	-	67.14	(79)
Southwest	0.9x 0.77	7)	(1	3.5	x	10	4.39		0.63		x	0.1	=		61.53	(79)
Southwest	0.9x 0.77	7)	(1	3.5	х	92	2.85		0.63		x [0.1			54.73	(79)
Southwest	0.9x 0.77	7	(1	3.5	x	69	9.27		0.63		x [0.1	=	-	40.83	(79)
Southwest	0.9x 0.77	7	(1	3.5	x	44	4.07		0.63		x [0.1	=	- [25.98	(79)
Sout <mark>hwes</mark> t	0.9x 0.77	7	(1	3.5	x	31	1.49		0.63		×	0.1	_ =	• [18.56	(79)
Sola <mark>r gair</mark>	ns in watts, o	alculate	d for ea	ch month	<u>1</u>			(83)m	= Sum(74)	m(82)m			_		
· · ·	3.13 39.87	55.83	71.3	81.81		32.07	78.77	70	.8 61.1	7 44	.41	27.79	19.74			(83)
	ns – internal		<u>, </u>		Ť									_		
(84)m= 35	54.37 368.92	374.29	373.23	367.39	3	51.99	338.67	336	.05 335.1	2 335	5.07	337.35	343.05	5		(84)
7. Mean	internal tem	perature	e (heatir	ig seasoi	า)											
Tempera	ature during	heating	periods	in the liv	ing	area fr	rom Tab	ole 9	Th1 (°C)						21	(85)
Utilisatio	on factor for g	gains for	living a	rea, h1,n	n (s	ee Tat	ole 9a)					-		_		
<u> </u>	Jan Feb	Mar	Apr	May		Jun	Jul	A	ug Se	p C	Oct	Nov	Dec	;		
(86)m= (0.99 0.99	0.97	0.93	0.82	(0.61	0.44	0.4	6 0.69	0.	91	0.98	0.99			(86)
Mean in	ternal tempe	rature in	living a	irea T1 (f	ollo	w step	os 3 to 7	7 in T	able 9c)							
(87)m= 2	0.54 20.61	20.72	20.86	20.96		21	21	2	1 20.9	9 20).9	20.71	20.52			(87)
Tempera	ature during	heating	periods	in rest of	fdw	velling	from Ta	able 9	9, Th2 (°C	;)		·				
· ·	0.36 20.36	20.37	20.37	20.37	-	20.38	20.38	20.	`	<u> </u>	.37	20.37	20.37			(88)
Utilisatio	n factor for g	nains for	rest of	dwelling	h2	.m (se	e Table	9a)	I							
	0.99 0.98	0.97	0.91	0.78		0.55	0.38	0.4	4 0.63	0.	89	0.97	0.99	٦		(89)
		-l		t of dwol	lina	T2 (fo	llow etc				-)	1	L			
	ternal tempe 9.75 19.85	20.02	20.22	20.34	<u> </u>	12 (10	20.38	20.	1	1	.27	20	19.73	٦		(90)
	13.05	20.02	1 20.22	20.04		0.00	20.00	20.	20.3			ing area ÷ (4		╀	0.51	(91)
												g	'	L	0.01	

Mean	interna	l temper	ature (fo	r the wh	ole dwe	lling) = fl	LA x T1	+ (1 – fL	.A) × T2					
(92)m=	20.15	20.24	20.37	20.54	20.65	20.69	20.69	20.7	20.69	20.59	20.36	20.13		(92)
		1	1		-	i	m Table	4e, whe	· · ·	opriate				
(93)m=	20.15	20.24	20.37	20.54	20.65	20.69	20.69	20.7	20.69	20.59	20.36	20.13		(93)
			uirement							· ۲' ۰۰ /	70)		la ta	
			ernal ter			ied at ste	ep 11 of	I able 9	o, so tha	t I I,m=(76)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	:										
(94)m=	0.99	0.98	0.97	0.92	0.79	0.58	0.41	0.43	0.66	0.9	0.97	0.99		(94)
	-		, W = (94	· · ·	,	00400	400.44			000 70	000.04	000.07		(05)
(95)m=	350.45	362.48	361.57	342.05	291.71	204.92	138.44	144.84	220.88	300.76	328.81	339.97		(95)
(96)m=	4.3	4.9	ernal tem 6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
							=[(39)m :							
(97)m=	553.18	533.93	481.88	399.63	306.59	206.06	138.5	144.93	223.86	341.94	456.08	550.72		(97)
Space	e heatin	g require	ement fo	r each m	nonth, k	Nh/mont	th = 0.02	24 x [(97)m – (95)m] x (4 ⁻	1)m			
(98)m=	150.83	115.22	89.51	41.46	11.07	0	0	0	0	30.64	91.64	156.8		_
								Tota	l per year	(kWh/year	') = Sum(9	8)15,912 =	687.17	(98)
Space	e heatin	g require	ement in	kWh/m ²	/year								13.29	(99)
9b. En	ergy red	quiremer	nts – Cor	nmu <mark>nity</mark>	heating	scheme	;							
							ater heat heating (unity sch	neme.	0	(301)
Fractio	n of spa	ace heat	from co	mmunity	system	1 – (301	1) =						1	(302)
							procedure			ip to four o	other heat	sources; ti	he latter	
			s, geother <mark>r</mark> Commun			rom powel	r stations.	See Appel	ndi <u>x C.</u>				1	(303a)
Fractio	n of tota	al space	heat from	m Comn	nunity he	eat pump	C			(3	02) x (303	a) =	1	(304a)
Factor	for cont	trol and	charging	method	(Table	4c(3)) fo	r commu	unity hea	ating syst	tem			1	(305)
Distrib	ution los	ss factor	(Table 1	2c) for c	ommun	ity heatir	ng syste	m					1	(306)
Space	heating	g											kWh/year	,
Annua	l space	heating	requirem	nent									687.17	
Space	heat fro	om Comi	munity h	eat pum	þ				(98) x (30)4a) x (30	5) x (306) =	-	687.17	(307a)
Efficier	ncy of s	econdar	y/supple	mentary	heating	system	in % (fro	om Table	e 4a or A	ppendix	E)		0	(308
Space	heating	require	ment froi	m secon	dary/su	oplemen	tary syst	em	(98) x (30)1) x 100 -	÷ (308) =		0	(309)
	heating		equirem	ont									4040 50	7
		-	ty schem										1816.58	
			nunity he)				(64) x (30)3a) x (30	5) x (306) =	=	1816.58	(310a)
Electric	city use	d for hea	at distribu	ution				0.01	× [(307a).	(307e) +	(310a)(310e)] =	25.04	(313)
Cooling	g Syste	m Energ	y Efficiei	ncy Ratio	C								0	(314)
Space	cooling	(if there	is a fixe	d cooling	g systen	n, if not e	enter 0)		= (107) ÷	(314) =			0	(315)

Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside	121.42	(330a)
warm air heating system fans	0	(330b)
pump for solar water heating	0	(330g)
Total electricity for the above, kWh/year =(330a) + (330b) + (330g) =	121.42	(331)
Energy for lighting (calculated in Appendix L)	318.91	(332)
Electricity generated by PVs (Appendix M) (negative quantity)	-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)	0	(334)
12b. CO2 Emissions – Community heating scheme		
Energy Emission factor kWh/year kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using two fuels repeat (363) to (366) for the second fuel	364	(367a)
CO2 associated with heat source 1 [(307b)+(310b)] x 100 ÷ (367b) x 0.52 =	356.99	(367)
Electrical energy for heat distribution [(313) x 0.52	12.99	(372)
Total CO2 associated with community systems (363)(366) + (368)(372)	369.98	(373)
CO2 associated with space heating (secondary) (309) x 0	= 0	(374)
CO2 associated with water from immersion heater or instantaneous heater (312) × 0.52 =	- 0	(375)
Total CO2 associated with space and water heating (373) + (374) + (375) =	369.98	(376)
CO2 associated with electricity for pumps and fans within dwelling (331)) × 0.52 =	63.02	(378)
CO2 associated with electricity for lighting (332))) x 0.52	165.52	(379)
Energy saving/generation technologies (333) to (334) as applicable Item 1 0.52 x 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =	253.39	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =	4.9	(384)
El rating (section 14)	96.49	(385)

			User D	etails:						
Assessor Name: Software Name:	Stroma FSAP 201			Versio	n: 1.0.4.23					
Address :	2 Bed Flat, 219-223			Address:		nh lunct	ion I ON			
1. Overall dwelling dimer	•	Columan		ne, Loug	προιοαί	gri Junci				
Ground floor			Area 8		(1a) x	Av. He	ight(m) 2.5	(2a) =	Volume(m³) 211.75	(3a)
Total floor area TFA = (1a)+(1b)+(1c)+(1d)+(1e)+(1n)	8	4.7	(4)					
Dwelling volume					(3a)+(3b)	+(3c)+(3d	l)+(3e)+	.(3n) =	211.75	(5)
2. Ventilation rate:										
Number of chimneys		econdary eating 0	, , , , , , , , , , , , , , , , , , ,	other 0] = [total	× 4	40 =	m ³ per hour	(6a)
Number of open flues	0 +	0] + [0] = [0	x 2	20 =	0	(6b)
Number of intermittent fan	s		J L_			0	x 1	10 =	0	(7a)
Number of passive vents					Ē	0	x 1	10 =	0	(7b)
Number of flueless gas fire	es					0	x 4	40 =	0	(7c)
								Air ch	ange <mark>s per</mark> ho	ur
Infiltration due to chimney					Ę	0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the		ed, proceed	to (17), o	otherwise c	ontinue fro	om (9) to (0	(9)
Additional infiltration) – fan ete el en timb en f		0.05 ([(9)-	1]x0.1 =	0	(10)
Structural infiltration: 0.2 if both types of wall are pre	sent, use the value corres				•	uction		l	0	(11)
deducting areas of opening		ed) or 0.1	l (seale	d), else	enter 0			[0	(12)
If no draught lobby, ente	er 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught st	ripped							0	(14)
Window infiltration			(0.25 - [0.2	x (14) ÷ 1	= [00			0	(15)
Infiltration rate				(8) + (10) -					0	(16)
Air permeability value, c			•	•		etre of e	nvelope	area	2	(17)
If based on air permeabilit	-					:- b - :			0.1	(18)
Air permeability value applies Number of sides sheltered		i been done	e or a deg	ree all per	meability	is being us	seu	I	0	(19)
Shelter factor				(20) = 1 - [0.075 x (1	9)] =			1	(20)
Infiltration rate incorporation	ng shelter factor			(21) = (18)	x (20) =				0.1	(21)
Infiltration rate modified fo	r monthly wind speed							I		
Jan Feb M	/lar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	.9 4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22)m ÷ 4									
(22a)m= 1.27 1.25 1	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allow	ing for sl	nelter an	d wind s	peed) =	= (21a) x	(22a)m					
	0.13	0.12	0.12	0.11	0.11	0.1	0.1	0.09	0.1	0.11	0.11	0.12		
		c <i>tive air</i> al ventila	-	rate for t	he appli	cable ca	se							- (220)
				endix N (2	(23a) = (23a	a) x Emv (e	equation (N5)), othe	rwise (23h	(23a) = (23a)			0.8	
		• •	0 11	. (, (, ,		m Table 4h	,	<i>,)</i> = (200)			0.8	
					Ū		,	HR) (24a	,	2h)m + ('	23h) v [[.]	1 – (23c)	73.	1 (230)
(24a)m=		0.26	0.26	0.24	0.24	0.23	0.23	0.23	0.23	0.24	0.25	0.25]]	(24a)
· · ·								MV) (24b					J	
(24b)m=	0	0		0	0	0	0	0	0	0	0	0	1	(24b)
· · ·	whole h	use ex	tract ver	ntilation of	r positiv	input v	ı ventilati	on from o	L outside				J	
,					•	•		lc) = (22k		.5 × (23b)			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(24c)
,					•	•		on from I		_			-	
	· ·	,	r <u>`</u>	r È	ŕ	, `	, <u> </u>	0.5 + [(2	r	<u> </u>		<u> </u>	1	
(24d)m=		0	0	0	0	0	0	0	0	0	0	0		(24d)
			î .	<u> </u>	í .	ŕ	, <u>,</u>	1d) in box	1 /	0.04	0.05	0.05	1	(05)
(25)m=	0.26	0.26	0.26	0.24	0.24	0.23	0.23	0.23	0.23	0.24	0.25	0.25	J	(25)
3. Hea	at l <mark>osse</mark>	s and he	eat loss	paramet	er:									
ELEN		Gros area		Openin m		Net Ar A ,r		U-valı W/m2		A X U (W/ł	<)	k-value kJ/m²·		A X k kJ/K
Window	ws Type	e 1				8.91	x1	/[1/(0.73)-	+ 0.04] =	6.32				(27)
Windov	ws Type	2				1.28	X	/[1/(0.73)-	+ 0.04] =	0.91				(27)
Windov	ws Type	93				11.02	5 <mark>x</mark> 1	/[1/(0.73)-	+ 0.04] =	7.82				(27)
Windov	ws Type	e 4				7.2	اx	/[1/(0.73)-	+ 0.04] =	5.11				(27)
Window	ws Type	e 5				3.15	۲x	/[1/(0.73)-	+ 0.04] =	2.23				(27)
Walls 7	Гуре1	27	,	8.91		18.09) x	0.15	=	2.71] [(29)
Walls 7	Гуре2	32.	5	1.28	3	31.22	<u>x</u>	0.15	=	4.68	ז ר		= F	(29)
Walls 7	ГуреЗ	14.	5	11.0	2	3.48	x	0.15	=	0.52	ז ר		= F	(29)
Walls 7	Гуре4	22	2	3.15	5	18.85	5 X	0.15	=	2.83	i F		ΞĒ	(29)
Walls 7	Гуре5	9		7.2		1.8	x	0.15		0.27	i F		ΞĒ	(29)
Roof		84.	7	0		84.7	x	0.11		9.32	i F		ΞĒ	(30)
Total a	rea of e	lements	s, m²			189.7	,							(31)
Party v	vall					17.5	×	0	=	0				(32)
Party fl	loor					84.7		L	1					(32a)
-	ernal wall **					126.5					L [\dashv	(32c)
				effective wi nternal wal		alue calcul		g formula 1	/[(1/U-valu	ıe)+0.04] a	L Is given in	paragrapl	ш Ц h 3.2	

Fabric heat loss, $W/K = S (A \times U)$	(26)(30) + (32) =	42.72	(33)
Heat capacity $Cm = S(A \times k)$	((28)(30) + (32) + (32a)(32e) =	14177.7	(34)
Thermal mass parameter (TMP = $Cm \div TFA$) in kJ/m ² K	Indicative Value: Medium	250	(35)

For design assessments where the details of the construction are not known precisely the indicative values of TMP in Table 1f

can be ı	used inste	ad of a dei	tailed calc	ulation.										
Therm	hermal bridges : S (L x Y) calculated using Appendix K													(36)
if details	of therma	al bridging	are not kri	nown (36) =	= 0.05 x (3	1)								
Total f	abric he	at loss							(33) +	(36) =			58.35	(37)
Ventila	ation hea	at loss ca	alculated	monthly	Ý		-		(38)m	= 0.33 × ((25)m x (5)	-	_	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	18.31	18.13	17.96	17.09	16.91	16.04	16.04	15.86	16.39	16.91	17.26	17.61		(38)
Heat ti	ransfer o	coefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	76.66	76.49	76.31	75.44	75.26	74.39	74.39	74.22	74.74	75.26	75.61	75.96		
				/ 01/						-	Sum(39)1.	12 /12=	75.4	(39)
	<u> </u>	meter (H	, 1	i						= (39)m ÷			1	
(40)m=	0.91	0.9	0.9	0.89	0.89	0.88	0.88	0.88	0.88	0.89	0.89	0.9		
Numbe	er of day	/s in moi	nth (Tab	le 1a)					,	Average =	: Sum(40)₁.	12 /12=	0.89	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
				!				<u>. </u>			ļ		1	
4 W/2	ater hea	ting ener	rav reau	irement [.]								kWh/ye	ear:	
			gy loqu											
		ipancy, I		. 14	(0 0000	ио (тг	- 40 0		040/			55		(42)
	A > 13.		+ 1.76 x	li - exp	(-0.0003	549 X (11	-A -13.9)2)] + 0.0	JU13 X (IFA -13.	.9)			
			ater usag	ge in <mark>litre</mark>	es per da	ay Vd,av	erage =	(25 x N)	+ 36		94	.67	1	(43)
						-	7	to achieve	a water us	se ta <mark>rget</mark> o	of			
not more	e that 125	litres per p	berson pel	r day (all w	ater use, I	not and co								
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wat	er usage i	n litres per	day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)						
(44)m=	104.13	100.35	96.56	92.77	88.99	85.2	85.2	88.99	92.77	96.56	100.35	104.13		
Enorm	contont of	bot wator	used cal	loulated m	onthly - 1	100 v Vd r	m v nm v [)))))))))))))))))))			$m(44)_{112} =$		1136.02	(44)
					-		r			-	-		1	
(45)m=	154.43	135.06	139.37	121.51	116.59	100.61	93.23	106.98	108.26	126.17	137.72	149.56		
lf instan	taneous w	vater heatii	ng at point	t of use (no	hot water	r storage),	enter 0 in	boxes (46,		l otal = Su	Im(45) ₁₁₂ =	=	1489.5	(45)
(46)m=	23.16	20.26	20.91	18.23	17.49	15.09	13.98	16.05	16.24	18.93	20.66	22.43	1	(46)
· · ·	storage		20.01	10.20	17.45	10.00	10.00	10.00	10.24	10.00	20.00	22.40	J	(10)
Storag	e volum	e (litres)	includir	ng any so	olar or W	/WHRS	storage	within sa	me ves	sel		180]	(47)
If com	munity h	eating a	ind no ta	ank in dw	velling, e	nter 110) litres in	(47)						
Otherv	vise if no	o stored	hot wate	er (this in	icludes i	nstantar	neous co	ombi boil	ers) ente	er '0' in ((47)			
	storage													
a) If m	nanufact	urer's de	eclared I	oss facto	or is kno	wn (kWł	n/day):					0		(48)
Temperature factor from Table 2b]	(49)	
			-	e, kWh/ye				(48) x (49)	=		18	80]	(50)
				cylinder l									1	
		age loss leating s		rom Tabl on 4-3	е∠(КVV	n/iitre/da	ay)				0.	01	J	(51)
	•	from Tal		0.10							0	87	1	(52)
		actor fro		2b								.6		(52)
											-			

	nergy lost from water storage, kWh/year nter (50) or (54) in (55)							(47) x (51)) x (52) x (53) =		.97 .97		(54) (55)
Water	storage	loss cal	culated	for each	month			((56)m = (55) × (41)	m	L			
(56)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(56)
If cylinde	er contain	s dedicate	d solar sto	nage, (57)	i m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	l ix H	
(57)m=	30.09	27.18	30.09	29.12	30.09	29.12	30.09	30.09	29.12	30.09	29.12	30.09		(57)
Primar	y circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
Primar	y circuit	loss cal	culated	for each	month (59)m = ((58) ÷ 36	65 × (41)	m					
(mo		factor f	rom Tab	le H5 if t	here is s	solar wat	ter heatir	-	cylinde		stat)	1	1	
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)
Combi	loss ca	lculated	for each	month	(61)m =	(60) ÷ 30	65 × (41))m	-		-	-		
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	neat req	uired for	water h	eating ca	alculated	for eac	h month	(62)m =	0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)	m
(62)m=	207.78	183.25	192.73	173.14	169.95	152.24	146.58	160.34	159.89	179.52	189.35	202.91		(62)
Solar D	HW input	calculated	using App	endix G o	r Appendix	H (negati	ve quantity	v) (enter '0	' if no sola	r contribut	ion to wate	er heating)		
(add a	dditiona	l lines if	FGHRS	and/or \	NWHRS	applies	, see Ap	pendix (G)			-		
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	t from w	ater hea	ter											
(64)m=	207.78	183.25	192.73	173.14	169.95	152.24	146.58	160.34	159.89	179.52	189.35	202.91		
								Outp	out from wa	ater heate	r (annual)₁	12	2117.69	(64)
Hea <mark>t g</mark>	jains fro	m water	heating	, kWh/m	onth 0.2	5 [0.85	× (45)m	+ (61)m	1 <mark>] +</mark> 0.8 >	(<mark>46)m</mark> (+ (57)m	+ (<mark>59)m</mark>]	
(65)m=	94.03	83.46	89.02	81.71	81.45	74.76	73.68	78.25	77.3	84.63	87.1	9 <mark>2.41</mark>		(65)
inclu	ude (57)	m in calo	culation	of (65)m	only if c	ylinder i	s in the o	dwelling	or hot w	ate <mark>r is f</mark> r	om com	munity h	eating	
5. Int	ternal ga	ains (see	e Table 5	5 and 5a):									
Metab	<u>olic gair</u>	is (Table	<u>5), Wat</u>	ts								-		
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3	127.3		(66)
Lightin	ig gains	(calcula	ted in Ap	opendix	L, equat	ion L9 o	r L9a), a	lso see	Table 5		-	_		
(67)m=	26.77	23.78	19.34	14.64	10.94	9.24	9.98	12.98	17.42	22.12	25.81	27.52		(67)
Applia	nces ga	ins (calc	ulated ir	n Appeno	dix L, eq	uation L	13 or L1	3a), also	o see Ta	ble 5			_	
(68)m=	228.98	231.36	225.37	212.62	196.53	181.41	171.31	168.93	174.92	187.66	203.76	218.88		(68)
Cookir	ng gains	(calcula	ted in A	ppendix	L, equa	tion L15	or L15a)	, also se	ee Table	5			_	
(69)m=	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73	35.73		(69)
Pumps	s and fa	ns gains	(Table \$	5a)										
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0		(70)
Losses	s e.g. ev	aporatic	on (nega	tive valu	es) (Tab	ole 5)								
(71)m=	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84	-101.84		(71)
Water	heating	gains (T	able 5)											
(72)m=	126.38	124.2	119.66	113.48	109.48	103.83	99.03	105.18	107.36	113.75	120.97	124.21		(72)
Total i	internal	gains =	:			(66)	m + (67)m	i + (68)m +	+ (69)m + ((70)m + (7	1)m + (72))m		
(73)m=	443.33	440.53	425.56	401.94	378.14	355.67	341.52	348.28	360.89	384.73	411.73	431.8		(73)
6. So	lar gains	S:	•	•	•	•	•		•		•	•		

Solar gains are calculated using solar flux from Table 6a and associated equations to convert to the applicable orientation.

Orientation:	Access Facto Table 6d	r	Area m²		Flux Table 6a		g_ Table 6b		FF Table 6c		Gains (W)	
Northeast 0.9	0.77	x	1.28	x	11.28	×	0.63	x	0.1] =	0.63	(75)
Northeast 0.9	0.77	x	1.28	x	22.97	x	0.63	x	0.1	=	1.28	(75)
Northeast 0.9	0.77	x	1.28	x	41.38	×	0.63	x	0.1	=	2.31	(75)
Northeast 0.9	0.77	x	1.28	x	67.96	x	0.63	x	0.1	=	3.8	(75)
Northeast 0.9	0.77	x	1.28	x	91.35	x	0.63	x	0.1	=	5.1	(75)
Northeast 0.9	0.77	x	1.28	x	97.38	x	0.63	x	0.1	=	5.44	(75)
Northeast 0.9	0.77	x	1.28	x	91.1	x	0.63	x	0.1	=	5.09	(75)
Northeast 0.9	0.77	x	1.28	x	72.63	x	0.63	x	0.1	=	4.06	(75)
Northeast 0.9	0.77	x	1.28	x	50.42	x	0.63	x	0.1	=	2.82	(75)
Northeast 0.9	0.77	x	1.28	x	28.07	x	0.63	x	0.1	=	1.57	(75)
Northeast 0.9	0.77	x	1.28	x	14.2	×	0.63	x	0.1] =	0.79	(75)
Northeast 0.9	0.77	x	1.28	x	9.21	x	0.63	x	0.1	=	0.51	(75)
Southeast 0.9	0.77	x	3.15	x	36.79	x	0.63	x	0.1	=	5.06	(77)
Southeast 0.9	0.77	x	3.15	x	62.67	x	0.63	x	0.1	=	8.62	(77)
Southeast 0.9	0.77	x	3.15	x	85.75	×	0.63	x	0.1	=	11.79	(77)
Southeast 0.9	0.77	x	3.15	×	106.25	х	0.63	х	0.1	=	14.61	(77)
Southeast 0.9	0.77	x	3.15	x	119.01	x	0.63	x	0.1] =	16.37	(77)
Southeast 0.9	0.77	x	3.15	х	118.15	×	0.63	x	0.1	=	16.25	(77)
Southeast 0.9	(0.7 <mark>7</mark>	x	3.15	x	113.91	x	0.63	x	0.1	=	15.67	(77)
Southeast 0.9	0.77	x	3.15	x	104.3 <mark>9</mark>	x	0.63	x	0.1	=	14.36	(77)
Southeast 0.9	0.77	x	3.15	x	92.85	×	0.63	x	0.1	=	12.77	(77)
Southeast 0.9	0.77	x	3.15	x	69.27	×	0.63	x	0.1	=	9.53	(77)
Southeast 0.9	0.77	x	3.15	x	44.07	×	0.63	x	0.1	=	6.06	(77)
Southeast 0.9	0.77	x	3.15	x	31.49	x	0.63	x	0.1	=	4.33	(77)
Southwest0.9	0.77	x	8.91	x	36.79		0.63	x	0.1	=	14.31	(79)
Southwest0.9	0.77	x	8.91	x	62.67		0.63	x	0.1	=	24.38	(79)
Southwest0.9	0.77	x	8.91	x	85.75		0.63	x	0.1	=	33.36	(79)
Southwest0.9	0.77	x	8.91	x	106.25		0.63	x	0.1	=	41.33	(79)
Southwest0.9	0.77	x	8.91	x	119.01		0.63	x	0.1	=	46.3	(79)
Southwest0.9	0.77	x	8.91	x	118.15		0.63	x	0.1	=	45.96	(79)
Southwest0.9	0.77	x	8.91	x	113.91		0.63	x	0.1	=	44.31	(79)
Southwest0.9	0.77	x	8.91	x	104.39		0.63	x	0.1	=	40.61	(79)
Southwest0.9	-	x	8.91	x	92.85		0.63	x	0.1	=	36.12	(79)
Southwest0.9	0.77	x	8.91	x	69.27		0.63	x	0.1	=	26.95	(79)
Southwest0.9	0.77	x	8.91	x	44.07]	0.63	x	0.1	=	17.14	(79)
Southwest0.9	0.77	x	8.91	x	31.49		0.63	x	0.1	=	12.25	(79)
West 0.9	0.77	x	7.2	x	19.64	×	0.63	x	0.1	=	6.17	(80)
West 0.9	0.77	x	7.2	x	38.42	×	0.63	x	0.1	=	12.08	(80)
West 0.9	0.77	x	7.2	x	63.27	x	0.63	x	0.1	=	19.89	(80)

West 0.9x				٦		-		-		_		
	0.77	×	7.2		92.28		0.63	×	0.1	=	29.01	(80)
West 0.9x	0.77	×	7.2		113.09	×	0.63	_ ×	0.1	=	35.55	(80)
West 0.9x	0.77	×	7.2		115.77	_ ×	0.63	_ ×	0.1	=	36.39	(80)
West 0.9x	0.77	×	7.2	×	110.22		0.63	_ ×	0.1	=	34.65	(80)
West 0.9x	0.77	X	7.2	×	94.68	×	0.63	×	0.1	=	29.76	(80)
West 0.9x	0.77	×	7.2	×	73.59	×	0.63	×	0.1	=	23.13	(80)
West 0.9x	0.77	×	7.2	×	45.59	×	0.63	×	0.1	=	14.33	(80)
West 0.9x	0.77	x	7.2	x	24.49	x	0.63	×	0.1	=	7.7	(80)
West 0.9x	0.77	x	7.2	x	16.15	x	0.63	x	0.1	=	5.08	(80)
Northwest 0.9x	0.77	x	11.02	x	11.28	x	0.63	×	0.1	=	5.43	(81)
Northwest 0.9x	0.77	x	11.02	x	22.97	x	0.63	x	0.1	=	11.05	(81)
Northwest 0.9x	0.77	x	11.02	x	41.38	x	0.63	x	0.1	=	19.92	(81)
Northwest 0.9x	0.77	x	11.02	x	67.96	x	0.63	x	0.1	=	32.71	(81)
Northwest 0.9x	0.77	x	11.02	x	91.35	x	0.63	x	0.1	=	43.97	(81)
Northwest 0.9x	0.77	x	11.02	x	97.38	x	0.63	x	0.1	=	46.88	(81)
Northwest 0.9x	0.77	x	11.02	x	91.1	x	0.63	x	0.1	=	43.85	(81)
Northwest 0.9x	0.77	x	11.02	x	72.63	x	0.63	x	0.1	=	34.96	(81)
Northwest 0.9x	0.77	x	11.02	X	50.42	x	0.63	x	0.1	=	24.27	(81)
Northwest 0.9x	0.77	×	11.02	x	28.07	7 ×	0.63	x	0.1	- 1	13.51	(81)
Northwest 0.9x	0.77	×	11.02	x	14.2	٦ 🔨	0.63	x	0.1	=	6.83	(81)
Northwest 0.9x	0.7 <mark>7</mark>	×	11.02	X	9.21	×	0.63	x	0.1	=	4.44	(81)
Northwest _{0.9x}	0.77	×	11.02	x	9.21	X	0.63	×	0.1	=	4.44	(81)
Nort <mark>hwest_{0.9x} Solar <u>gains ir</u></mark>		7) ×	9.21	_/	0.63 n = Sum(74)m .		0.1	=	4.44	(81)
	watts, calo	7			9.21 50.92 143.56	(83)m	n = Sum(74)m .			26.61	4.44	(81)
Sola <mark>r gains ir</mark>	watts, cald	culated 87.27	for each mo 121.46 147.	29 1	50.92 143.56	(83)m	n = Sum(74)m .	(82)m			4.44	(83)
Solar gains ir (83)m= 31.61	watts, cald 57.41	culated 87.27	for each mo 121.46 147.	29 1 m + (50.92 143.56	(83)m 123	1 = Sum(74) m . .74 99.11	(82)m	38.53		4.44	
Solar gains ir (83)m= 31.61 Total gains –	watts, calo 57.41 internal and 497.94	culated 87.27 d solar 512.83	for each mo 121.46 147. (84)m = (73) 523.4 525.	29 1 m + (43 5	50.92 143.56 83)m , watts	(83)m 123	n = Sum(74)m . .74 99.11	(82)m 65.88	38.53	26.61	4.44	(83)
Solar gains ir (83)m= 31.61 Total gains – (84)m= 474.94 7. Mean inte	watts, calo 57.41 internal and 497.94 trnal tempe	culated 87.27 d solar 512.83 rature (for each mo 121.46 147. (84)m = (73) 523.4 525. (heating seas	29 1 m + (43 5 son)	50.92 143.56 83)m , watts	(83)m 3 123 472	n = Sum(74)m . .74 99.11 .02 460	(82)m 65.88	38.53	26.61	4.44	(83)
Solar gains ir (83)m= 31.61 Total gains – (84)m= 474.94 7. Mean inte Temperature	watts, cald 57.41 internal and 497.94 trnal tempe during hea	culated 87.27 d solar 512.83 rature (ating po	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating sease eriods in the	29 1 m + (43 5 son) living	50.92 143.56 83)m , watts 06.59 485.08	(83)m 123 472 able 9	n = Sum(74)m . .74 99.11 .02 460	(82)m 65.88	38.53	26.61		(83)
Solar gains ir (83)m= 31.61 Total gains – (84)m= 474.94 7. Mean inte Temperature	watts, cald 57.41 internal and 497.94 trnal tempe during hea	culated 87.27 d solar 512.83 rature (ating po	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating sease eriods in the	29 1 m + (43 5 son) living	50.92 143.56 83)m , watts 06.59 485.08 area from Ta	(83)m (83)m (123 (123 (123 (123)) (123) (1	n = Sum(74)m . .74 99.11 .02 460	(82)m 65.88	38.53	26.61		(83)
Solar gains ir (83)m= 31.61 Total gains – (84)m= 474.94 7. Mean inte Temperature Utilisation fa	watts, calo 57.41 internal and 497.94 rnal tempe during hea ctor for gain	culated 87.27 d solar 512.83 rature (ating points for li	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating sease eriods in the iving area, h	29 1 m + (43 5 son) living l,m (s ay	50.92 143.56 83)m , watts 66.59 485.08 area from Ta see Table 9a)	(83)m (83)m (123 (123 (123 (123)) (123) (1	r = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep	(82)m 65.88 450.6	38.53	26.61		(83)
Solar gains ir (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter Temperature Utilisation far (86)m = 1	watts, cald 57.41 internal and 497.94 497.94 ctor for gain Feb 1	culated 87.27 d solar 512.83 rature (ating po ns for li Mar 1	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating seared) eriods in the iving area, hr Apr M 0.99 0.9	29 1 m + (43 5 son) living l,m (s ay 5	50.92 143.56 83)m , watts 306.59 485.08 area from Ta see Table 9a) Jun Jul 0.83 0.66	(83)m (8	1 = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91	(82)m 65.88 450.6 ⁻ Oct	38.53 450.26 Nov	26.61 458.4 Dec		(83) (84) (85)
Solar gains ir (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter Temperature Utilisation far (86)m = 1	watts, calo 57.41 internal and 497.94 rnal tempe e during hea ctor for gain Feb 1	culated 87.27 d solar 512.83 rature (ating po ns for li Mar 1	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating seared) eriods in the iving area, hr Apr M 0.99 0.9	29 1 m + (43 5 son) living l,m (s ay 5 (follo	50.92 143.56 83)m , watts 06.59 485.08 area from Ta see Table 9a) Jun Jul	(83)m (8	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91 Table 9c)	(82)m 65.88 450.6 ⁻ Oct	38.53 450.26 Nov	26.61 458.4 Dec		(83) (84) (85)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter- Utilisation factor (86)m = 1 Mean interna (87)m = 20.06	watts, cald 57.41 internal and 497.94 trnal tempe during hea ctor for gain Feb 1 1 al temperat 20.15	culated 87.27 d solar 512.83 rature (ating pe ns for li Mar 1 20.31	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating sease eriods in the iving area, h 0.99 0.9 iving area Tr 20.54 20.7	29 1 m + (43 5 son) living l,m (s ay 5 (follo 77 2	50.92 143.56 83)m , watts 66.59 485.08 area from Tage area from Tage area from Jul 0.83 0.66 ow steps 3 to 20.94 20.99	(83)m (83)m 123 472 472 able 9 A 0.6 7 in T 20.	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91 Table 9c) 98 20.88	(82)m 65.88 450.6 0.99	38.53 1 450.26 Nov 1	26.61 458.4 Dec 1		(83) (84) (85) (86)
Solar gains ir (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter- Temperature Utilisation fa (86)m = 1 Mean interna (87)m = 20.06 Temperature	watts, cald 57.41 internal and 497.94 e during hea ctor for gain Feb 1 al temperat 20.15 e during hea	culated 87.27 d solar 512.83 rature (ating po ns for li Mar 1 20.31 ating po	for each mo121.46147. $(84)m = (73)$ 523.4525.(heating seaseeriods in thetving area, hrAprM0.990.9iving area Tr20.5420.3eriods in rest	29 1 m + (43 5 son) living l,m (s ay 5 (follo 77 2 0f dv	50.92 143.56 83)m , watts 306.59 485.08 485.08 area from Ta 306.59 Jun Jul 0.83 0.66 ow steps 3 to 20.99 velling from T 1000000000000000000000000000000000000	(83)m (83)m (83)m (123 (83)m (123 (83)m (123) (83)m (123) (83)m (123) (123	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91 Table 9c) 98 98 20.88 9, Th2 (°C)	(82)m 65.88 450.6 0ct 0.99 20.61	38.53 450.26 Nov 1 20.3	26.61 458.4 Dec 1 20.05		(83) (84) (85) (85) (86) (87)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean intervent Utilisation far (86)m = 1 Mean intervent (87)m = 20.06 Temperature (88)m = 20.16	watts, cald 57.41 internal and 497.94 e during hea ctor for gain Feb 1 al temperat 20.15 e during hea 20.16	culated 87.27 d solar 512.83 rature (ating po ns for li Mar 1 20.31 ating po 20.17	for each mo 121.46 147. (84)m = (73) 523.4 525. (heating sear eriods in the iving area, hr 0.99 0.9 iving area Tr 20.54 20.3 eriods in rest 20.18 20.3	29 1 m + (43 5 son) living l,m (s ay 5 (follo 7 2 of dv 8 2	50.92 143.56 83)m , watts 306.59 485.08 area from Tage area from Tage area from Jul Jun Jul 0.83 0.66 ow steps 3 to 20.94 20.99 velling from T 20.19 20.19	(83)m (83)m (83)m (123 (83)m (83	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91 Table 9c) 98 98 20.88 9, Th2 (°C)	(82)m 65.88 450.6 0.99	38.53 450.26 Nov 1 20.3	26.61 458.4 Dec 1		(83) (84) (85) (86)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter- Utilisation fa (86)m = 1 Mean interna (87)m = 20.06 Temperature (88)m = 20.16 Utilisation fa	watts, cald 57.41 internal and 497.94 (rnal tempe e during hea ctor for gain Feb 1 al temperat 20.15 e during hea 20.16 ctor for gain	culated 87.27 d solar 512.83 rature (ating po ns for li Mar 1 20.31 ating po 20.17 ns for r	for each mo121.46147. $(84)m = (73)$ 523.4525.(heating seaseeriods in thetving area, h Apr M 0.99 0.9 iving area T 20.54 20.7 eriods in rest 20.18 20.7 est of dwellir	29 1 m + (43 5 son) living l,m (s ay (follo 7 2 (follo 7 2 0 f dv 8 2 2 9 9 9 9 9 9 9 9 9 9 9 1 9 9 9 9 9 9	50.92 143.56 83)m , watts 306.59 485.08 485.08 area from Table 9a) 30 Jun Jul 30.66 ow steps 3 to 20.94 20.94 20.99 velling from T 20.19 ,m (see Table 30	(83)m (83)m 123 472 472 472 A 0.6 7 in T 20. - able 9 20. - able 9 20. e 9a)	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 59 0.91 Table 9c) 98 98 20.88 9, Th2 (°C) 19 19 20.18	(82)m 65.88 450.6 [°] 0.99 20.61 20.18	38.53 450.26 Nov 1 20.3 20.17	26.61 458.4 Dec 1 20.05 20.17		(83) (84) (85) (86) (86) (87) (88)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter- Temperature Utilisation fa (86)m = 1 Mean interna (87)m = 20.06 Temperature (88)m = 20.16 Utilisation fa (89)m = 1	watts, cald 57.41 internal and 497.94 (rnal tempe e during hea ctor for gain Feb 1 al temperat 20.15 e during hea 20.16 ctor for gain 1	culated 87.27 d solar 512.83 rature (ating points for line Mar 1 20.31 ating points 20.17 ns for r 0.99	for each mo121.46147. $(84)m = (73)$ 523.4525.(heating seaseeriods in thetving area, hAprM0.990.9iving area T20.5420.7eriods in rest20.1820.7est of dwellir0.980.9	29 1 m + (43 5 son) living ,m (s ay 5 (folle 7 2 of dv 8 2 ag, h2 3	50.92 143.56 83)m , watts 506.59 485.08 area from Table 9a) Jun Jul 0.83 0.66 ow steps 3 to 20.94 20.99 velling from T 20.19 20.19 ,m (see Table 0.76 0.54	(83)m (83)m 123 472 472 472 A 0.6 7 in T 20. 7 able 9 20. 20. e 9a) 0.5	I = Sum(74)m . .74 99.11 .02 460 .02 460 , Th1 (°C)	(82)m 65.88 450.6 ² 450.6 ² 0.99 20.61 20.18	38.53 450.26 Nov 1 20.3	26.61 458.4 Dec 1 20.05		(83) (84) (85) (85) (86) (87)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean internet Utilisation fa (86)m = 1 Mean internet (87)m = 20.06 Temperature (88)m = 20.16 Utilisation fa (89)m = 1 Mean internet	watts, calo 57.41 internal and 497.94 & rnal tempe e during hea ctor for gain Feb 1 1 al temperat 20.15 e during hea 20.16 ctor for gain 1 al temperat	culated 87.27 d solar 512.83 rature (ating po ating po 1 20.31 ating po 20.17 ns for r 0.99	for each mo121.46147. $(84)m = (73)$ 523.4 $525.$ (heating seareriods in theving area, hr Apr M 0.99 0.9 iving area Tr 20.54 20.7 eriods in rest 20.54 20.7 eriods in rest 20.18 20.7 est of dwellir 0.98 0.9	29 1 m + (43 5 son) living l,m (s ay 5 (follo 7 2 of dv 8 2 ag, h2 3 velling	50.92 143.56 83)m , watts 306.59 485.08 area from Tage 0.83 0.66 ow steps 3 to 20.94 20.99 velling from T 20.19 20.19 ,m (see Table 0.76 0.54 T2 (follow st	(83)m (83)m (83)m (123 (83)m (123 (83)m (123 (83)m (123 (83)m (123 (123) (12) (1	I = Sum(74)m . .74 99.11 .02 460 , Th1 (°C) ug Sep 39 0.91 Table 9c) 98 98 20.88 9, Th2 (°C) 19 19 20.18 59 0.86 59 0.86	(82)m 65.88 450.6 450.6 0.99 20.61 20.18 0.98 e 9c)	38.53 450.26 Nov 1 20.3 20.17 1	26.61 458.4 Dec 1 20.05 20.17		(83) (84) (85) (85) (86) (87) (88) (88) (89)
Solar gains in (83)m = 31.61 Total gains – (84)m = 474.94 7. Mean inter- Temperature Utilisation fa (86)m = 1 Mean interna (87)m = 20.06 Temperature (88)m = 20.16 Utilisation fa (89)m = 1	watts, calo 57.41 internal and 497.94 & rnal tempe e during hea ctor for gain Feb 1 1 al temperat 20.15 e during hea 20.16 ctor for gain 1 al temperat	culated 87.27 d solar 512.83 rature (ating points for line Mar 1 20.31 ating points 20.17 ns for r 0.99	for each mo121.46147. $(84)m = (73)$ 523.4525.(heating seaseeriods in thetving area, hAprM0.990.9iving area T20.5420.7eriods in rest20.1820.7est of dwellir0.980.9	29 1 m + (43 5 son) living l,m (s ay 5 (follo 7 2 of dv 8 2 ag, h2 3 velling	50.92 143.56 83)m , watts 506.59 485.08 area from Table 9a) Jun Jul 0.83 0.66 ow steps 3 to 20.94 20.99 velling from T 20.19 20.19 ,m (see Table 0.76 0.54	(83)m (83)m (83)m (123 (83)m (123 (83)m (123 (83)m (123 (83)m (123 (123) (12) (1	I = Sum(74)m . .74 99.11 .02 460 .02 460 , Th1 (°C) 98 .09 0.91 Table 9c) 98 .03 20.88 .04 20.18 .05 0.86 .06 10 7 in Table 18 20.08	(82)m 65.88 450.6 [°] 450.6 [°] 20.61 20.18 20.18 0.98 e 9c) 19.7	38.53 450.26 Nov 1 20.3 20.17	26.61 458.4 Dec 1 20.05 20.17 1 18.88		(83) (84) (85) (86) (86) (87) (88)

Mean internal temperature (for the whole dwelling) = $fLA \times T1 + (1 - fLA) \times T2$

_			-										_	
(92)m=	19.25	19.36	19.58	19.88	20.18	20.38	20.43	20.42	20.32	19.98	19.57	19.24		(92)
· · · · r	-		1					e 4e, whe	· · ·	opriate			I	
(93)m=	19.25	19.36	19.58	19.88	20.18	20.38	20.43	20.42	20.32	19.98	19.57	19.24		(93)
			uirement											
				nperatur using Ta		ed at ste	ep 11 of	Table 9t	o, so tha	t Ti,m=(76)m an	d re-calc	culate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
L Utilisa			ains, hm					- 5						
(94)m=	1	1	0.99	0.98	0.93	0.78	0.58	0.62	0.87	0.98	0.99	1		(94)
Usefu	l gains,	hmGm ,	, W = (94	4)m x (84	4)m									
(95)m=	473.67	495.88	508.61	511.8	488.6	396.61	280.39	292.24	398.71	440.14	447.82	457.41		(95)
Month	ly avera	age exte	rnal tem	perature	from Ta	able 8		i						
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
г			i	· · ·			- /	x [(93)m·	, <i>,</i>	-			I	
		1106.35		828.7	638.15	430.01	284.63	298.65	465.16	705.61	942.96	1142.3		(97)
· r					10nth, k\ 111.27			24 x [(97)			r –	500 55	l	
(98)m=	500.55	410.24	364.08	228.17	111.27	0	0	0	0	197.51	356.51	509.55	0077.00	
					,			lota	i per year	(kvvn/year) = Sum(9	8)15,912 =	2677.88	(98)
Space	heating	g require	ement in	kWh/m ²	/year								31.62	(99)
9b. Ene	ergy req	uiremer	nts – Cor	nmunity	heating	scheme								
								ting prov (Table 11			unity sch	neme.	0	(301)
									1) 0 11 11	one			0	
Fractio	n of spa	ice heat	from co	mmunity	system	1 – (301	I) =						1	(302)
								allows for		ıp to four (other heat	sources; t	he latter	
			-	ity heat p		om power	stations.	See Apper	iuix C.				1	(303a)
				m Comm	-	eat pump)			(3	- 02) x (303	a) =	1	(304a)
Factor	for cont	rol and o	charging	method	(Table 4	4c(3)) fo	r commu	unity hea	iting syst	tem			1	(305)
Distribu	ition los	s factor	(Table 1	2c) for c	ommun	ity heatir	ng syste	m					1	(306)
Space	heating	3											kWh/year	
Annual	space	heating	requirem	nent									2677.88	
Space	heat fro	m Comr	munity h	eat pum	þ				(98) x (30	04a) x (30	5) x (306) =	=	2677.88	(307a)
Efficien	cy of se	econdary	y/supple	mentary	heating	system	in % (frc	om Table	4a or A	ppendix	E)		0	(308
Space	heating	require	ment fro	m secon	dary/sup	plemen	tary syst	tem	(98) x (30)1) x 100 -	÷ (308) =		0	(309)
Water				- mt										7
			equirem										2117.69	
			ty scherr nunity he	eat pump)				(64) x (30)3a) x (30	5) x (306) =	=	2117.69	(310a)
Electric	ity used	l for hea	at distribu	ution				0.01	× [(307a).	(307e) +	· (310a)(310e)] =	47.96	(313)
Cooling	g Syster	n Energ	y Efficie	ncy Ratio	C								0	(314)
Space	cooling	(if there	is a fixe	d cooling	g system	n, if not e	enter 0)		= (107) ÷	(314) =			0	(315)

Electricity for pumps and fans within dwelling (Table 4f): mechanical ventilation - balanced, extract or positive input from outside	Г	191.68	(330a)
warm air heating system fans	Ē	0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year =(330a) + (330b) + (330g) =		191.68	(331)
Energy for lighting (calculated in Appendix L)		472.85	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)		0	(334)
12b. CO2 Emissions – Community heating scheme			
Energy Emission kWh/year kg CO2/k		missions g CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP using two fuels repeat (363) to (366) for the s	econd fuel	364	(367a)
CO2 associated with heat source 1 [(307b)+(310b)] x 100 ÷ (367b) x 0.52	=	683.76	(367)
Electrical energy for heat distribution [(313) x 0.52	=	24.89	(372)
Total CO2 associated with community systems (363)(366) + (368)(372)	=	708.65	(373)
CO2 associated with space heating (secondary) (309) × 0	=	0	(374)
CO2 associated with water from immersion heater or instantaneous heater (312) x 0.52	=	0	(375)
Total CO2 associated with space and water heating (373) + (374) + (375) =		708.65	(376)
CO2 associated with electricity for pumps and fans within dwelling (331)) x 0.52	=	99.48	(378)
CO2 associated with electricity for lighting (332))) x 0.52	=	245.41	(379)
Energy saving/generation technologies (333) to (334) as applicable Item 1 0.52	x 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =		708.42	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =	Ē	8.36	(384)
El rating (section 14)	Ľ	92.68	(385)

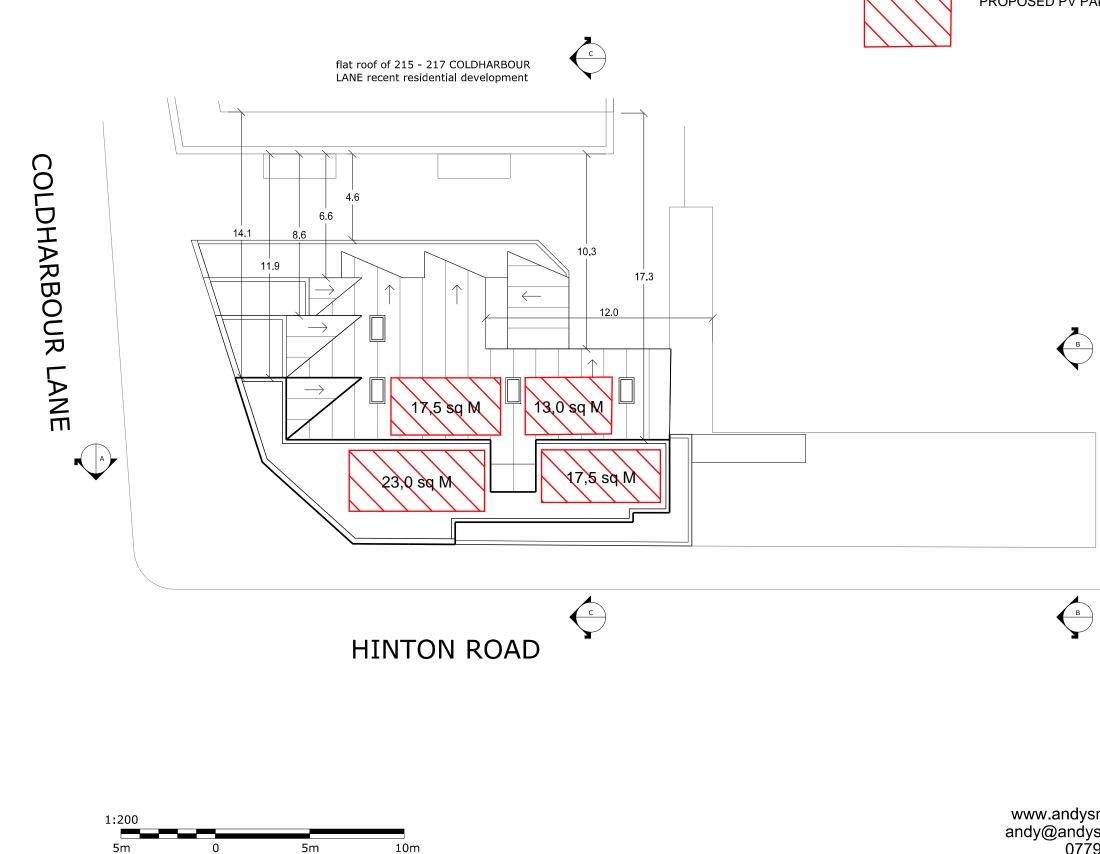
		L	Jser De	etails:						
Assessor Name: Software Name:	Stroma FSAP 2012		ę	Stroma Softwa .ddress:	re Ver			Versio	n: 1.0.4.23	
Addross	3 Bed Flat, 219-223					nh lunct	ion I ON			
Address : 1. Overall dwelling dimen		Columation		ie, Loug	προιοαί	JII JUIICI	ION, LON			
Ground floor			Area	· ·	(1a) x	Av. He i	ight(m) 2.5	(2a) =	Volume(m³) 124.5	(3a)
Total floor area TFA = (1a))+(1b)+(1c)+(1d)+(1e)	+(1n)	49	9.8	(4)					
Dwelling volume	124.5	(5)								
2. Ventilation rate:										
Number of chimpove	heating he	condary eating	c + [other] = [total	v/	40 =	m ³ per hour	_
Number of chimneys Number of open flues		0	+	0] - [] = [0		20 =	0	(6a) (6b)
Number of intermittent fan	s			-		0	x ^	10 =	0	(7a)
Number of passive vents					Ē	0	x ′	10 =	0	(7b)
Number of flueless gas fire	es					0	X 4	40 =	0	(7c)
								Air ch	anges per ho	ur
Infiltration due to chimney						0		÷ (5) =	0	(8)
If a pressurisation test has be Number of storeys in the Additional infiltration		a, proceed to	o (17), ot	nerwise c	ontinue ind	om (9) to (-1]x0.1 =	0	(9) (10)
Structural infiltration: 0.2 if both types of wall are pre deducting areas of opening	sent, use the value corresp					uction	-		0	(11)
If suspended wooden flo		ed) or 0.1	(sealed	d), else (enter 0				0	(12)
If no draught lobby, ente	r 0.05, else enter 0								0	(13)
Percentage of windows	and doors draught str	ipped							0	(14)
Window infiltration).25 - [0.2					0	(15)
Infiltration rate						2) + (13) -			0	(16)
Air permeability value, q		•	•	•	•	etre of e	nvelope	area	2	(17)
If based on air permeabilit Air permeability value applies	•					is heina u	sed		0.1	(18)
Number of sides sheltered			or a aogr		noability i	o boing a	500		3	(19)
Shelter factor			(2	20) = 1 - [0.075 x (1	9)] =			0.78	(20)
Infiltration rate incorporatir	ng shelter factor		(2	21) = (18)	x (20) =				0.08	(21)
Infiltration rate modified fo	r monthly wind speed									_
Jan Feb M	Mar Apr May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Monthly average wind spe	ed from Table 7									
(22)m= 5.1 5 4	4.4 4.3	3.8	3.8	3.7	4	4.3	4.5	4.7		
Wind Factor (22a)m = (22))m ÷ 4									
(22a)m= 1.27 1.25 1.	.23 1.1 1.08	0.95	0.95	0.92	1	1.08	1.12	1.18		

Adjuste	ed infiltra	ation rat	e (allowi	ng for sh	elter an	d wind s	peed) =	(21a) x	(22a)m		_			
	0.1	0.1	0.09	0.09	0.08	0.07	0.07	0.07	0.08	0.08	0.09	0.09		
	ate effec echanica		-	rate for t	he appli	cable ca	se						0.5	(220)
				endix N, (2	3b) = (23a	a) x Fmv (e	equation (N5)) . other	wise (23b) = (23a)			0.5	(23a) (23b)
				iency in %) (200)			0.5	
			-	-	-					2b)m i (22h) v [1 – (23c)	73.1	(23c)
(24a)m=		0.23	0.23	0.22	0.22	0.21	0.21	0.21 (24a	0.21	0.22	230) × [0.22	0.23	- 100j	(24a)
												0.20	l	(,)
D) II (24b)m=				entilation				0 (240	0 m = (22)	$\frac{2}{0}$ m + (1)	230)	0	1	(24b)
		-		•	-	-	-	-	•	0	0	0		(240)
,				ntilation c hen (24c	•	•				.5 × (23t))			
(24c)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24c)
				ole hous									1	
i	if (22b)m	n = 1, the	en (24d)	m = (22k	o)m othe	erwise (2	4d)m =	0.5 + [(2	2b)m² x	0.5]			1	
(24d)m=	0	0	0	0	0	0	0	0	0	0	0	0		(24d)
Effe	ctive air	change	rate - er	nter (24a) or (24b	o) or (24	c) or (24	d) in box	(25)					
(25)m=	0.23	0.23	0.23	0.22	0.22	0.21	0.21	0.21	0.21	0.22	0.22	0.23		(25)
3. He	at losses	s and he	eat loss i	oaramete	er:									_
ELEN		Gros		Openin		Net Ar	ea	U-valu	Je	AXU		k-value	e	AXk
		area		'n		A ,n	n²	W/m2	K	(VV/	K)	kJ/m²·l	ĸ	kJ/K
Windo	ws Type	1				10.8	x1/	[1/(0.73)+	- 0.04] =	7.66				(27)
Windo	<mark>ws</mark> Type	2				2.475	; x1/	[1/(0.73)+	- 0.04] =	1.76				(27)
Wall <mark>s</mark> ⁻	Type1	19.	5	10.8		8.7	x	0.15] = [1.31				(29)
Walls ⁻	Гуре2	3.5		2.47		1.03	×	0.15	 =	0.15	F i		i i	(29)
Total a	rea of el	lements	, m²			23								(31)
Party v	vall					51.75	j x	0		0				(32)
Party f	_					49.8	\exists		เ		L		\dashv	(32a)
Party c	eiling					49.8					ĺ		\exists	(32b)
Interna	al wall **					45.6					Ī		$\exists \vdash$	(32c)
							ated using	ı formula 1,	/[(1/U-valu	ıe)+0.04] a	as given in	paragraph	3.2	
	heat los			nternal wall	s and pan	litions		(26)(30)	+ (32) =				40.07	(22)
	apacity (0)				(20)(00)		(30) + (32	2) + (225)	(220) -	10.87	
			. ,	- Cm ·		k l/m2k				tive Value	· · · ·	(326) =	13269.5	
		-		P = Cm ÷	,			racisaly the				abla 1f	250	(35)
	used instea				constructi	ion ale not	KIIOWII PI	ecisely life	inucative	values of				
Therm	al bridge	es : S (L	x Y) cal	culated u	using Ap	pendix ł	<						5.22	(36)
			are not kn	own (36) =	= 0.05 x (3	1)								
Total fa	abric hea	at loss							(33) +	(36) =			16.09	(37)
Ventila	tion hea	t loss ca	alculated	monthly	/				(38)m	= 0.33 × (25)m x (5)	1	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(38)m=	9.59	9.51	9.43	9.03	8.95	8.55	8.55	8.47	8.71	8.95	9.11	9.27		(38)
Heat tr	ansfer c	oefficier	nt, W/K						(39)m	= (37) + (38)m			
(39)m=	25.68	25.6	25.52	25.12	25.04	24.64	24.64	24.56	24.8	25.04	25.2	25.36		
Stroma I	FSAP 2012	2 Version:	1.0.4.23	(SAP 9.92)	- http://ww	ww.stroma	.com		1	Average =	Sum(39)1	12 /12=	25.1p	age 2 of 39)

Heat lo	ss para	meter (H	HLP), W	/m²K					(40)m	= (39)m ÷	· (4)			
(40)m=	0.52	0.51	0.51	0.5	0.5	0.49	0.49	0.49	0.5	0.5	0.51	0.51		
L	r of dou		nth (Tab						/	Average =	Sum(40) ₁ .	12 /12=	0.5	(40)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
(41)m=	31	28	31	30	31	30	31	31	30	31	30	31		(41)
							-							
4. Wat	ter heat	ing enei	rgy requ	irement:								kWh/ye	ear:	
if TFA				[1 - exp	(-0.0003	849 x (TF	-A -13.9)2)] + 0.(0013 x (1	TFA -13		68		(42)
Reduce t	he annua	al average		usage by	5% if the a	lwelling is	designed	(25 x N) to achieve		se target o		4.2		(43)
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Hot wate	r usage ii	n litres per	r day for ea	ach month	Vd,m = fa	ctor from	Table 1c x	(43)					I	
(44)m=	81.62	78.65	75.68	72.72	69.75	66.78	66.78	69.75	72.72	75.68	78.65	81.62		-
Energy c	ontent of	hot water	used - cal	culated mo	onthly $= 4$.	190 x Vd,r	m x nm x D	OTm / 3600			m(44) ₁₁₂ = ables 1b, 1		890.4	(44)
(45)m=	121.04	105.86	109.24	95.24	91.38	78.86	73.07	83.85	84.85	98.89	107.94	117.22		_
lf instanta	aneous w	ater heatii	ng at point	t of use (no	o hot water	storage),	enter 0 in	boxes (46		Total = Su	m(45) ₁₁₂ =	-	1167.46	(45)
(46)m=	18.16	15.88	16.39	14.29	13.71	11.83	10.96	12.58	12.73	14.83	16.19	17.58		(46)
Water s	-		includir	na anv so	olar or M	/WHRS	storage	within sa	ame ves	sel		180		(47)
-			and no ta	-								100		()
	-	-			-			ombi boil	ers) ente	er '0' in (47)			
Water s	-												L	
			eclared I		or is kno	wn (kWł	n/day):				1.	85		(48)
•			m Table								0	.6		(49)
•••			storage	-				(48) x (49)) =		1.	11		(50)
,			eclared of factor fr	•								0		(51)
		-	ee secti		- (<i></i>					0		
Volume	factor	from Ta	ble 2a									0		(52)
Temper	rature fa	actor fro	m Table	2b								0		(53)
•••			⁻ storage	e, kWh/y€	ear			(47) x (51)) x (52) x (53) =		0		(54)
		54) in (5									1.	11		(55)
Water s	storage	loss cal	culated	for each	month			((56)m = (55) × (41)r	m				
(56)m=	34.41	31.08	34.41	33.3	34.41	33.3	34.41	34.41	33.3	34.41	33.3	34.41		(56)
If cylinde	r contains	dedicate	d solar sto	rage, (57)	m = (56)m	x [(50) – (H11)] ÷ (5	0), else (5	7)m = (56)	m where (H11) is fro	m Append	ix H	
(57)m=	34.41	31.08	34.41	33.3	34.41	33.3	34.41	34.41	33.3	34.41	33.3	34.41		(57)
Primary	/ circuit	loss (ar	nnual) fro	om Table	e 3							0		(58)
					,	,	• •	65 × (41)						
			r	i	1	1	· · · · · ·	ng and a	· ·	i	, 	-	I	
(59)m=	23.26	21.01	23.26	22.51	23.26	22.51	23.26	23.26	22.51	23.26	22.51	23.26		(59)

Combi	loss ca	alculated	for eac	h month	(61)m =	(60) ÷	365 × (41)m						
(61)m=	0	0	0	0	0	0	0	0	0	0	0	0		(61)
Total h	eat req	uired for	water h	neating c	alculated	for e	ach month	(62)m =	= 0.85 × ((45)m +	(46)m +	(57)m +	(59)m + (61)m	
(62)m=	178.71	157.95	166.91	151.05	149.06	134.6	7 130.75	141.52	140.67	156.56	163.76	174.89]	(62)
Solar DH	-IW input	calculated	using Ap	pendix G o	r Appendix	H (neg	ative quantity	y) (enter '()' if no sola	r contribut	tion to wate	er heating)	-	
(add a	dditiona	al lines if	FGHRS	S and/or	WWHRS	appli	es, see Ap	pendix	G)				_	
(63)m=	0	0	0	0	0	0	0	0	0	0	0	0		(63)
Output	from w	ater hea	ter											
(64)m=	178.71	157.95	166.91	151.05	149.06	134.6	7 130.75	141.52	140.67	156.56	163.76	174.89		_
			-					Out	put from w	ater heate	r (annual)₁	12	1846.5	(64)
Heat g	ains fro	m water	heating	, kWh/m	onth 0.2	5 ´ [0.	35 × (45)m	ı + (61)r	n] + 0.8 >	x [(46)m	+ (57)m	+ (59)m]	
(65)m=	86.38	76.87	82.46	76.32	76.52	70.8	7 70.43	74.02	72.86	79.02	80.54	85.11]	(65)
inclu	ide (57)	m in calo	culation	of (65)m	only if c	ylinde	r is in the	dwelling	or hot w	ater is f	rom com	munity h	- neating	
5. Int	ternal g	ains (see	e Table	5 and 5a):									
Metab	olic daii	ns (Table	e 5). Wa	itts	,									
	Jan	Feb	Mar	Apr	May	Ju	n Jul	Aug	Sep	Oct	Nov	Dec		
(66)m=	84.21	84.21	84.21	84.21	84.21	84.2	1 84.21	84.21	84.21	8 <mark>4.21</mark>	84.21	84.21		(66)
Lightin	g gains	, (calcula	ted in A	ppendix	L, equat	ion L9	or L9a), a	lso see	Table 5					
(67)m=	17.77	15.79	12.84	9.72	7.27	6.13	6.63	8.62	11.56	14.68	17.14	18.27		(67)
Applia	nces ga	ains (calc	ulated i	n Appen	dix L, eq	uation	L13 or L1	3a), also	see Ta	ble 5			1	
(68)m=	146.71	148.24	144.4	136.23	125.92	116.2		108.24	112.07	120.24	130.55	140.24		(68)
Cookir	ng gains	s (calcula	ted in A		L. equat	ion L'	5 or L15a), also s	ee Table	5			1	
(69)m=	31.42	31.42	31.42	31.42	31.42	31.4		31.42	31.42	31.42	31.42	31.42		(69)
Pumps	and fa	ins gains	(Table	5a)										
(70)m=	0	0	0	0	0	0	0	0	0	0	0	0]	(70)
Losses	se.a.e	vaporatic	n (nega	ative valu	ı les) (Tab	le 5)		I	1	<u> </u>	1	I	1	
	-67.37	<u> </u>	<u> </u>	1	-67.37	-67.3	7 -67.37	-67.37	-67.37	-67.37	-67.37	-67.37]	(71)
		ı gains (T			ļ				1		1		1	
(72)m=	116.11	114.39	110.83	1	102.85	98.4	3 94.67	99.49	101.2	106.21	111.86	114.4	1	(72)
		l gains =	I			(66)m + (67)m	L 1 + (68)m				I	1	
(73)m=	328.86		316.34	300.21	284.31	269.0		264.6	273.1	289.39	307.81	321.17	1	(73)
	lar gain	1										-		· ,
			using sol	ar flux from	Table 6a	and ass	ociated equa	ations to c	onvert to th	ne applicat	ole orientat	ion.		
Orienta	ation:	Access F	actor	Area	l	F	lux		g_		FF		Gains	
		Table 6d		m²		-	able 6a	1	Table 6b	Т	able 6c		(W)	
Southe	ast <mark>0.9x</mark>	0.77)	2.4	47	×	36.79	x	0.63	x	0.1	=	3.98	(77)
Southe	ast <mark>0.9x</mark>	0.77	,	2.4	47	× 🗌	62.67	× [0.63		0.1	=	6.77	(77)
Southe	ast <mark>0.9x</mark>	0.77	,	2.4	47	× 🗌	85.75	× [0.63		0.1	=	9.27	(77)
Southe	ast <mark>0.9x</mark>	0.77		2.4	47	× 🗌	106.25	× [0.63		0.1	=	11.48	(77)
Southe	ast <mark>0.9x</mark>	0.77	>	2.4	47	x	119.01	× [0.63	× [0.1	=	12.86	(77)

Southeast 0.9x	0.77	x	2.47	x	1	18.15	×	0.63	x	0.1	=	12.77	(77)
Southeast 0.9x	0.77	x	2.47	×	1	13.91	x	0.63	x	0.1	=	12.31	(77)
Southeast 0.9x	0.77	x	2.47	x	1	04.39	x	0.63	x	0.1	=	11.28	(77)
Southeast 0.9x	0.77	x	2.47	x	ę	92.85	x	0.63	x	0.1	=	10.03	(77)
Southeast 0.9x	0.77	x	2.47	×	6	69.27	x	0.63	x	0.1	=	7.48	(77)
Southeast 0.9x	0.77	x	2.47	×	2	14.07	x	0.63	x	0.1	=	4.76	(77)
Southeast 0.9x	0.77	x	2.47	×	3	31.49	x	0.63	x	0.1	=	3.4	(77)
Southwest0.9x	0.77	x	10.8	×	3	36.79	1 I	0.63	x	0.1	=	17.35	(79)
Southwest0.9x	0.77	x	10.8	×	6	62.67	ĪĪ	0.63	x	0.1	=	29.55	(79)
Southwest0.9x	0.77	×	10.8	×	8	35.75	ĪĪ	0.63	x	0.1	=	40.43	(79)
Southwest _{0.9x}	0.77	x	10.8	×	1	06.25	i i	0.63	×	0.1	=	50.1	(79)
Southwest _{0.9x}	0.77	x	10.8	×	1	19.01	i i	0.63	x	0.1	=	56.12	(79)
Southwest _{0.9x}	0.77	×	10.8	×	1	18.15	i i	0.63	×	0.1	=	55.71	(79)
Southwest _{0.9x}	0.77	×	10.8	- ×	1	13.91	i i	0.63	×	0.1	=	53.71	(79)
Southwest _{0.9x}	0.77	×	10.8	× آ	1	04.39	i i	0.63	×	0.1	=	49.22	(79)
Southwest _{0.9x}	0.77	×	10.8	- ×		92.85	i i	0.63	- x	0.1	=	43.78	(79)
Southwest _{0.9x}	0.77	×	10.8	× آ	6	69.27	i i	0.63	×	0.1	=	32.66	(79)
Southwest0.9x	0.77	×	10.8	×		14.07		0.63	x	0.1	=	20.78	(79)
Sout <mark>hwest_{0.9x}</mark>	0.77	۲×	10.8	۲ ×		31.49	i i	0.63	x	0.1	-	14.85	(79)
Solar gains in	watts calc	ulated	for each m	onth			(83)m	= Sum(74)m .	(82)m				
(83)m= 21.32		49.7		3.98	68.48	66.02	60.		4 <mark>0.15</mark>	25.54	18.25		(83)
Total gains –	internal and	l solar	(84)m = (73	3)m +	(83)m	, watts						1	
(84)m= 350.18	363 3	66.04	361.79 35	3.28	337.54	325.34	325.	.11 326.91	329.54	333.36	339.42		(84)
7. Mean inte	rnal temper	ature ((heating sea	ason)									
Temperature				· · · ·	area	from Tab	ble 9.	Th1 (°C)				21	(85)
Utilisation fa	-	• •					,	()					
Jan	Feb	Mar		May	Jun	Jul	A	ug Sep	Oct	Nov	Dec]	
(86)m= 0.97		0.91		.66	0.47	0.33	0.3	<u> </u>	0.77	0.93	0.98		(86)
Mean interna		ure in l	iving area 1		ow sto	ne 3 to 7	I 7 in T			1	<u> </u>	1	
(87)m= 20.81	<u> </u>	20.92		21	21	21	21		20.99	20.91	20.8	1	(87)
	II								20100		20.0	J	
	<u> </u>	ating po 20.51	i	st of d).52	20.53	1	1		20.52	20.52	20.51	1	(88)
(88)m= 20.51	20.51 2	20.51	20.52 20	0.52	20.53	20.53	20.8	53 20.52	20.52	20.52	20.51		(00)
Utilisation fa	<u> </u>	ī		<u> </u>		1	1					1	
(89)m= 0.97	0.95	0.9	0.79 0	.62	0.43	0.3	0.3	1 0.49	0.74	0.92	0.97		(89)
Mean interna	al temperatu	ure in t	he rest of d	wellin	g T2 (f	ollow ste	eps 3	to 7 in Tabl	e 9c)		-	_	
(90)m= 20.26	20.33 2	20.42	20.5 20).52	20.53	20.53	20.	53 20.52	20.51	20.41	20.25		(90)
L		I	I					f	LA = Liv	ing area ÷ (4) =	0.47	(91)
Mean interna	1 1	ļ	r the whole	dwelli	ng) = f		+ (1		LA = Liv	ing area ÷ (4) =	0.47	(91)
Mean interna (92)m= 20.52	al temperatu	ļ		dwelli	ng) = f 20.75		+ (1	– fLA) × T2	LA = Liv 20.73		4) =	0.47	(91)


Apply adjustment to the mean internal temperature from Table 4e, where appropriate

			1			1		1		1	1			
(93)m=	20.52	20.58	20.66	20.72	20.74	20.75	20.75	20.75	20.75	20.73	20.65	20.51		(93)
			uirement		ro obtoir		on 11 of			tTim (76)m.on	d ro oolo	vilata	
			or gains	•		ieu al sie	эрттог	Table 9	0, so ina	u 11,m=(70)m an	d re-calc	ulate	
	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec		
Utilisa	ation fac	tor for g	ains, hm	:	<u>`</u>				:		I			
(94)m=	0.97	0.95	0.9	0.8	0.64	0.45	0.31	0.33	0.5	0.76	0.92	0.97		(94)
Usefu		hmGm	, W = (94	4)m x (84	4)m	-				1				
(95)m=	338.57	344.02	330.62	288.94	225.52	151.46	102.2	106.8	164.75	249.44	306.94	330.09		(95)
	· ·		ernal tem	r <u> </u>	i	r						· · · · · ·		
(96)m=	4.3	4.9	6.5	8.9	11.7	14.6	16.6	16.4	14.1	10.6	7.1	4.2		(96)
			i	· · ·	i	Lm , W =	- ,	1 · · · ·		r ī	244.20	442.52		(07)
(97)m=	416.48	401.35	361.22	296.95	226.39	151.48 Wh/mon1	102.2	106.8	164.82	253.71	341.39	413.52		(97)
(98)m=	57.96	38.53	22.77	5.77	0.65	0	n = 0.02		0	3.18	24.81	62.07		
(00)11-	07.00	00.00	22.11	0.11	0.00	Ŭ	0	-	-		r) = Sum(9		215.73	(98)
Creek	. h tin			L-\ \ /b /m-?				1010	i per yeur	(ittiniyou	r) – Oun(0	0,15,912 -		4
		• •	ement in		•							[4.33	(99)
						scheme								
						ing or wa nentary l					unity sch	neme.	0	(301)
							-		1) 0 111	one				
						1 – (301							1	(302)
	-					rces. The p from power				up to four	other heat	sources; tl	he latter	
			Commun			· · · · <i>p</i> · · · ·						[1	(303a)
Fractio	n of tota	al space	heat fro	m Comn	nunity he	eat pump				(3	02) x (303	a) =	1	(304a)
						4c(3)) fo		unitv hea	atina svs				1	(305)
						ity heatir			5-7-				1	(306)
	heating			20,1010	Johnnan	ity noath	ig oyoto					l	kWh/yea	` ´ ´
•		-	requirem	nent									215.73	
Space	heat fro	m Comi	nunity h	eat pum	р				(98) x (30	04a) x (30	5) x (306)	=	215.73	(307a)
Efficier	ncy of se	econdar	y/supple	mentary	heating	system	in % (fro	om Table	e 4a or A	ppendix	E)		0	(308
Space	heating	require	ment fro	m secon	dary/sup	oplemen	tary syst	tem	(98) x (30	01) x 100 ·	÷ (308) =		0	(309)
												I		
	heating I water I		equirem	ent								[1846.5	
			ty schem nunity he		C				(64) x (30	03a) x (30	5) x (306) :	=	1846.5	(310a)
Electric	city use	d for hea	at distribu	ution				0.01	× [(307a).	(307e) +	+ (310a)…((310e)] =	20.62	(313)
Cooling	g Systei	n Energ	y Efficie	ncy Rati	0								0	(314)
Space cooling (if there is a fixed cooling system, if not enter 0) $= (107) \div (314) = 0$ (33)													(315)	
Electric	city for p	oumps a	nd fans v	within dv	velling (1	Table 4f)	:					I		
						sitive in		outside					116.96	(330a)

warm air heating system fans		0	(330b)
pump for solar water heating		0	(330g)
Total electricity for the above, kWh/year	=(330a) + (330b) + (330g) =	116.96	(331)
Energy for lighting (calculated in Appendix L)		313.91	(332)
Electricity generated by PVs (Appendix M) (negative quantity)		-664.99	(333)
Electricity generated by wind turbine (Appendix M) (negative quantity)		0	(334)
12b. CO2 Emissions – Community heating scheme			
F -	arms Emission feator	Emissions.	

	Energy kWh/year	Emission factor kg CO2/kWh	Emissions kg CO2/year	
CO2 from other sources of space and water heating (not CHP) Efficiency of heat source 1 (%) If there is CHP usin	g two fuels repeat (363) to	(366) for the second fu	el 364	(367a)
CO2 associated with heat source 1 [(307b)+	-(310b)] x 100 ÷ (367b) x	0.52	= 294.04	(367)
Electrical energy for heat distribution	[(313) x	0.52	= 10.7	(372)
Total CO2 associated with community systems	(363)(366) + (368)(372)	= 304.74	(373)
CO2 associated with space heating (secondary)	(309) x	0	= 0	(374)
CO2 associated with water from immersion heater or instantant	eous heater (312) x	0.52	= 0	(375)
Total CO2 associated with space and water heating	(373) + (374) + (375) =		304.74	(376)
CO2 associated with electricity for pumps and fans within dwell	ing (331)) x	0.52	= 60.7	(378)
CO2 associated with electricity for lighting	(332))) ×	0.52	= 162.92	(379)
Energy saving/generation technologies (333) to (334) as applic Item 1	able	0.52 x 0.01 =	-345.13	(380)
Total CO2, kg/year sum of (376)(382) =			183.23	(383)
Dwelling CO2 Emission Rate (383) ÷ (4) =			3.68	(384)
El rating (section 14)			97.41	(385)

219 - 223 COLDHARBOUR LANE, LOUGHBOROUGH JUNCTION : PROPOSED ROOF PLAN : 1:100 @ A1 (1:200 @ A3) : 16th MARCH 2020

P5.08

PROPOSED PV PANAL ARRAY

1-9 Hinton Road

www.andysmithdesign.co.uk andy@andysmithdesign.co.uk 07791462376

